当前位置: 首页 > news >正文

C语言经典习题25

冒泡排序   对一维数组进行升序排序,然后在数组中输入20个数,将排序后的结果打印输出。

#include<stdio.h>
#define N 20
int main()
{int a[N];int i;for(i=0;i<N;i++)            //初始化数组的数     {scanf("%d",&a);}for(i=0;i<n-1;i++)          //只需要比较个数-1次即可{for(j=0;j<n-i-i;j++)     //每次比较的次数会发生改变{if(a[j]>a[j+1])     //升序排列{t=a[j];a[j]=a[j+1];a[j+1]=t;}}}           for(i=0;i<N;i++)                 //输出打印{printf("%d  ",a[i]);}}

相关文章:

C语言经典习题25

冒泡排序 对一维数组进行升序排序&#xff0c;然后在数组中输入20个数&#xff0c;将排序后的结果打印输出。 #include<stdio.h> #define N 20 int main() {int a[N];int i;for(i0;i<N;i) //初始化数组的数 {scanf("%d",&a);}for(i0;…...

2-47 基于matlab的时域有限差分法(FDTD法)拉夫等效原理进行时谐场外推

基于matlab的时域有限差分法(FDTD法)拉夫等效原理进行时谐场外推。外推边界距离吸收边界的距离、电磁场循环、傅立叶变换提起幅值和相位、各远区剖分点电场、方向系数计算等操作&#xff0c;得出可视化结果。程序已调通&#xff0c;可直接运行。 2-47 时域有限差分法(FDTD法) 拉…...

JupyterNotebook快捷键 自用

COMMAND MODE —————————————————————————————— Up Down cells的上下选择 A B 在上/下方插入cell C V X 复制/粘贴/剪切cell 双击D 删除所选cell Z 恢复被删除的cell 双击I Interrupt中断内核 Shift Enter 运行cell并选择下方 EDIT MODE ———…...

【我的OpenGL学习进阶之旅】讲一讲GL_TEXTURE_2D和GL_TEXTURE_EXTERNAL_OES的区别

在使用OpenGL ES进行图形图像开发时,我们常使用GL_TEXTURE_2D纹理类型,它提供了对标准2D图像的处理能力。这种纹理类型适用于大多数场景,可以用于展示静态贴图、渲染2D图形和进行图像处理等操作。 另外,有时我们需要从Camera或外部视频源读取数据帧并进行处理。这时,我们…...

Makefile 如何将生成的 .o 文件放到指定文件夹

研究了不少文章&#xff0c;我行通了一个&#xff0c;但是也不全&#xff0c;目前只能适用当前文件夹&#xff0c;如果源文件有子文件夹处理不了&#xff0c;还得继续研究。很多人说编译完把O文件移动走或者直接删掉。我想说的是不符合我的要求&#xff0c;移走或者删除O文件&a…...

聊一聊知识图谱结合RAG

因为最近在做一些关于提高公司内部使用的聊天机器人的回答准确率&#xff0c;并且最近微软官方也是开源了一下graphrag的源码&#xff0c;所以想聊一聊这个知识图谱结合rag。 rag在利用私有数据增强大模型回答的领域是一种比较典型的技术&#xff0c;也就是我们提出问题的时候&…...

Java面试锦集 之 一、Java基础(1)

一、Java基础&#xff08;1&#xff09; 1.final 关键字的作用&#xff1f; 修饰变量&#xff1a; 一旦被赋值&#xff0c;就不能再被修改&#xff0c;保证了变量值的稳定性。 例&#xff1a; final int NUMBER 10; //之后就不能再改变 NUMBER 的值了。修饰方法&#xff1a;…...

【leetcode】排列序列

给出集合 [1,2,3,...,n]&#xff0c;其所有元素共有 n! 种排列。 按大小顺序列出所有排列情况&#xff0c;并一一标记&#xff0c;当 n 3 时, 所有排列如下&#xff1a; "123""132""213""231""312""321" 给定…...

【Cesium开发实战】视频融合功能的实现,可自定义位置和视频路径

Cesium有很多很强大的功能,可以在地球上实现很多炫酷的3D效果。今天给大家分享一个视频融合功能。 1.话不多说,先展示 视频融合 2.设计思路 点击绘制开始在地图上绘制视频融合的点位,形成视频播放的区域,双击弹框输入名称和要播放视频的路径,即可对应区域播放对应视频,…...

【秋招笔试题】小明的美食

解析&#xff1a;思维题。由于需要互不相同&#xff0c;每次操作取重复的值与最大值相加即可&#xff0c;这样即可保证相加后不会新增重复的值。因此统计重复值即可。 #include <iostream> #include <algorithm>using namespace std; const int maxn 1e5 5; int…...

基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建及典型案例应用

生命周期分析 (Life Cycle Analysis, LCA) 是评价一个产品系统生命周期整个阶段——从原材料的提取和加工&#xff0c;到产品生产、包装、市场营销、使用、再使用和产品维护&#xff0c;直至再循环和最终废物处置——的环境影响的工具。这种方法被认为是一种“从摇篮到坟墓”的…...

Linux操作系统 -socket网络通信

同一台主机之间的进程 1.古老的通信方式 无名管道 有名管道 信号 2、IPC对象通信 system v 消息队列 共享内存 信号量集 由于不同主机间进程通信 3.socket网络通信 国际网络体系结构&#xff1a; 七层OSI模型(理论…...

【苍穹】完美解决由于nginx更换端口号导致无法使用Websocket

一、报错信息 进行到websocket开发的过程中&#xff0c;遇到了前端报错&#xff0c;无法连接的提示&#xff1a; 经过F12排查很明显是服务端和客户端并没有连接成功。这里就涉及到之前的坑&#xff0c;现在需要填上了。 二、报错原因和推导 应该还记得刚开苍穹的第一天配置前…...

Qt中在pro中实现一些宏定义

在pro文件中利用 DEFINES 定义一些宏定义供工程整体使用。&#xff08;和在cpp/h文件文件中定义使用有点类似&#xff09;可以利用pro的中的宏定义实现一些全局的判断 pro中实现 #自定义一个变量 DEFINES "PI\"3.1415926\"" #自定义宏 DEFINES "T…...

bash XXX.sh文件和直接运行XXX.sh的区别

区别&#xff1a; bash XXX.sh 明确说明使用bash作为脚本的解释器不需要文件有执行权限 XXX.sh 需要指定相关解释器。如果第一行是#!/bin/bash则使用bash&#xff0c;如果是#!/bin/sh&#xff0c;则使用sh作为解释器需要有执行权限:通过chmod x 文件名指定 注意: #!是特殊标…...

【Python机器学习】k-近邻算法简单实践——改进约会网站的配对效果

需求背景&#xff1a; XX一直使用约会网站寻找适合自己的约会对象&#xff0c;ta会把人分为3种类型&#xff1a; 不喜欢、魅力一般、非常有魅力 对人分类轴&#xff0c;发现了对象样本的以下3种特征&#xff1a; 1、每年获得的飞行里程数 2、玩视频游戏所耗时间百分比 3、…...

vue3前端开发-小兔鲜项目-登录组件的开发表单验证

vue3前端开发-小兔鲜项目-登录组件的开发表单验证&#xff01;现在开始写登录页面的内容。首先这一次完成基础的首页按钮点击跳转&#xff0c;以及初始化一些简单的表单的输入验证。后期还会继续完善内容。 1&#xff1a;首先还是准备好login页面的组件代码内容。 <script …...

Winform上位机TCP客户端/服务端、串口通信

Winform上位机TCP客户端/服务端、串口通信 背景 日常练习&#xff0c;着急换工作&#xff0c;心态都快乱了。 工具 串口调试助手 网络调试助手 代码 客户端 using Microsoft.VisualBasic.Logging; using System.Net.Sockets; using System.Text;namespace TcpClientDem…...

Linux基础复习(二)

前言 本文介绍了一下Linux命令行基本操作及网络配置 一、 命令行提示含义 [当前用户主机名 工作目录]$ 若当前用户是root&#xff0c;则最后一个字符为# 否则&#xff0c;最后一个字符为$ 二、常用Linux命令及其解释 修改主机名 一般在创建一台主机后会使用hostname相关命…...

nginx漏洞修复 ngx_http_mp4_module漏洞(CVE-2022-41742)【低可信】 nginx版本升级

风险描述&#xff1a; Nginx 是一款轻量级的Web服务器、反向代理服务器。 Nginx 的受影响版本中的ngx _http_mp4_module模块存在内存越界写入漏洞&#xff0c;当在配置中使用 mp4 directive时&#xff0c;攻击者可利用此漏洞使用使用ngx_http_mp4_module模块处理特制的音频或视…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...