Leetcode 2824. 统计和小于目标的下标对数目
2824. 统计和小于目标的下标对数目
2824. 统计和小于目标的下标对数目
- 一、题目描述
- 二、我的想法
一、题目描述
给你一个下标从 0 开始长度为 n 的整数数组 nums 和一个整数 target ,请你返回满足 0 <= i < j < n 且 nums[i] + nums[j] < target 的下标对 (i, j) 的数目。
示例 1:
输入:nums = [-1,1,2,3,1], target = 2
输出:3
解释:总共有 3 个下标对满足题目描述:
(0, 1) ,0 < 1 且 nums[0] + nums[1] = 0 < target
(0, 2) ,0 < 2 且 nums[0] + nums[2] = 1 < target
(0, 4) ,0 < 4 且 nums[0] + nums[4] = 0 < target
注意 (0, 3) 不计入答案因为 nums[0] + nums[3] 不是严格小于 target 。
示例 2:
输入:nums = [-6,2,5,-2,-7,-1,3], target = -2
输出:10
解释:总共有 10 个下标对满足题目描述:
(0, 1) ,0 < 1 且 nums[0] + nums[1] = -4 < target
(0, 3) ,0 < 3 且 nums[0] + nums[3] = -8 < target
(0, 4) ,0 < 4 且 nums[0] + nums[4] = -13 < target
(0, 5) ,0 < 5 且 nums[0] + nums[5] = -7 < target
(0, 6) ,0 < 6 且 nums[0] + nums[6] = -3 < target
(1, 4) ,1 < 4 且 nums[1] + nums[4] = -5 < target
(3, 4) ,3 < 4 且 nums[3] + nums[4] = -9 < target
(3, 5) ,3 < 5 且 nums[3] + nums[5] = -3 < target
(4, 5) ,4 < 5 且 nums[4] + nums[5] = -8 < target
(4, 6) ,4 < 6 且 nums[4] + nums[6] = -4 < target
提示:
- 1 <= nums.length == n <= 50
- -50 <= nums[i], target <= 50
二、我的想法
与两数之和类似。
- 可以将数组先排个序,因为只要求返回最后的数量,而不是具体的下标。
- 使用双指针,一个 left 指向最开始的位置,一个 right 指向末尾。再加上一个变量 count 用来记录数量。
- 使用循环。因为数组被排序排好了
(1)如果 left 指针指向的元素加上 right 指向的元素和大于等于 target,那说明最大的数太大了,往左移看看有没有小一点的能满足条件的数;
(2)如果 left 指针指向的元素加上 right 指向的元素和小于 target,满足条件,那说明 right 左边的数加上 left 指向的元素的和全都小于 target ,count 加上 right - left,把这些全都加上,left 就可以向右移了。 - 等 left 大于等于 right 的时候就可以结束循环,最后返回 count 作为结果。
class Solution:def countPairs(self, nums: List[int], target: int) -> int:nums.sort()numsLen = len(nums)left = 0right = numsLen - 1count = 0while left < right:if nums[left] + nums[right] >= target:right -= 1else:count += right - leftleft += 1return count相关文章:
Leetcode 2824. 统计和小于目标的下标对数目
2824. 统计和小于目标的下标对数目 2824. 统计和小于目标的下标对数目 一、题目描述二、我的想法 一、题目描述 给你一个下标从 0 开始长度为 n 的整数数组 nums 和一个整数 target ,请你返回满足 0 < i < j < n 且 nums[i] nums[j] < target 的下标对…...
TCP服务器主动断开客户端
自定义消息函数 afx_msg LRESULT CbaseMFCprojectDlg::OnOnsocketbartender(WPARAM wParam, LPARAM lParam) WPARAM wParam:消息来源 res recv(wParam, cs, 65535, 0);获取这个客户端端口socket通道里面的信息长度为65535存放在cs里面 如果获取得到res0即是说明该客户端已经断…...
接口自动化中json.dumps()跟json.loads()区别详解
接口自动化中对于参数处理经常会用到json.dumps()跟json.loads(),下面主要分享一下自己使用总结 1.主要区别 json.dumps() 用于将字典转换为字符串格式 json.loads()用于将字符串转换为字典格式 import jsondict1 {"name":"amy","gender":woma…...
计算机网络-配置双机三层互联(静态路由方式)
目录 交换机工作原理路由器工作原理路由信息表组成部分路由器发决策 ARP工作原理配置双机三层互联(静态路由方式) 交换机工作原理 MAC自学习过程 初始状态: 刚启动的交换机的MAC地址表是空的。 学习过程: 当交换机收到一个数据帧…...
ES(Elasticsearch)常用的函数有哪些?
【电子书大全】内含上千本顶级编程书籍,是程序员必备的电子书资源包,并且会不断地更新,助你在编程的道路上更上一层楼! 链接: https://pan.baidu.com/s/1yhPJ9LmS_z5TdgIgxs9NvQ?pwdyyds > 提取码: yyds Elasticsearch&#x…...
【计算机网络】ICMP报文实验
一:实验目的 1:掌握ICMP报文的各种类型及其代码。 2:掌握ICMP报文的格式。 3:深入理解TTL的含义(Time to Live,生存时间)。 二:实验仪器设备及软件 硬件:RCMS-C服务器…...
transformers进行学习率调整lr_scheduler(warmup)
一、get_scheduler实现warmup 1、warmup基本思想 Warmup(预热)是深度学习训练中的一种技巧,旨在逐步增加学习率以稳定训练过程,特别是在训练的早期阶段。它主要用于防止在训练初期因学习率过大导致的模型参数剧烈波动或不稳定。…...
智能优化算法之灰狼优化算法(GWO)
智能优化算法是一类基于自然界中生物、物理或社会现象的优化技术。这些算法通过模拟自然界中的一些智能行为,如遗传学、蚁群觅食、粒子群体运动等,来解决复杂的优化问题。智能优化算法广泛应用于各种工程和科学领域,因其具有全局搜索能力、鲁…...
昇思25天学习打卡营第17天|计算机视觉
昇思25天学习打卡营第17天 文章目录 昇思25天学习打卡营第17天ShuffleNet图像分类ShuffleNet网络介绍模型架构Pointwise Group ConvolutionChannel ShuffleShuffleNet模块构建ShuffleNet网络 模型训练和评估训练集准备与加载模型训练模型评估模型预测 打卡记录 ShuffleNet图像分…...
Windows图形界面(GUI)-MFC-C/C++ - 键鼠操作
公开视频 -> 链接点击跳转公开课程博客首页 -> 链接点击跳转博客主页 目录 MFC鼠标 派发流程 鼠标消息(客户区) 鼠标消息(非客户) 坐标处理 客户区 非客户 坐标转换 示例代码 MFC键盘 击键消息 虚拟键代码 键状态 MFC鼠标 派发流程 消息捕获&#…...
Angular 18.2.0 的新功能增强和创新
一.Angular 增强功能 Angular 是一个以支持开发强大的 Web 应用程序而闻名的平台,最近发布了 18.2.0 版本。此更新带来了许多新功能和改进,进一步增强了其功能和开发人员体验。在本文中,我们将深入探讨 Angular 18.2.0 为开发人员社区提供的…...
matlab 小数取余 rem 和 mod有 bug
目录 前言Matlab取余函数1 mod 函数1.1 命令行输入1.2 命令行输出 2 rem 函数2.1 命令行输入2.2 命令行输出 分析原因注意 前言 在 Matlab 代码中mod(0.11, 0.1) < 0.01 判断为真,mod(1.11, 0.1) < 0.01判断为假,导致出现意料外的结果。 结果发现…...
Avalonia中的数据模板
文章目录 1. 介绍和概述什么是数据模板:数据模板的用途:2. 定义数据模板在XAML中定义数据模板:在代码中定义数据模板:3. 使用数据模板在控件中使用数据模板:数据模板选择器:定义数据模板选择器:在XAML中使用数据模板选择器:4. 复杂数据模板使用嵌套数据模板:使用模板绑…...
Sqlmap中文使用手册 - Techniques模块参数使用
目录 1. Techniques模块的帮助文档2. 各个参数的介绍2.1 --techniqueTECH2.2 --time-secTIMESEC2.3 --union-colsUCOLS2.4 --union-charUCHAR2.5 --union-fromUFROM2.6 --dns-domainDNS2.7 --second-urlSEC2.8 --second-reqSEC 1. Techniques模块的帮助文档 Techniques:These o…...
科普文:kubernets原理
kubernetes 已经成为容器编排领域的王者,它是基于容器的集群编排引擎,具备扩展集群、滚动升级回滚、弹性伸缩、自动治愈、服务发现等多种特性能力。 本文将带着大家快速了解 kubernetes ,了解我们谈论 kubernetes 都是在谈论什么。 一、背…...
GO-学习-02-常量
常量是不变的 const package main import "fmt"func main() {//常量定义时必须赋值const pi 3.1415926const e 2.718//一次声明多个常量const(a 1b 2c "ihan")const(n1 100n2n3)//n2,n3也是100 同时声明多个常量时,如果省略了值则表示和…...
Vue系列面试题
大家好,我是有用就扩散,有用就点赞。 1.Vue中组件间有哪些通信方式? 父子组件通信: (1)props | $emit (接收父组件数据 | 传数据给父组件) (2)ref | $refs&a…...
等级保护 总结2
网络安全等级保护解决方案的主打产品: HiSec Insight安全态势感知系统、 FireHunter6000沙箱、 SecoManager安全控制器、 HiSecEngine USG系列防火墙和HiSecEngine AntiDDoS防御系统。 华为HiSec Insight安全态势感知系统是基于商用大数据平台FusionInsight的A…...
关于Redis(热点数据缓存,分布式锁,缓存安全(穿透,击穿,雪崩));
热点数据缓存: 为了把一些经常访问的数据,放入缓存中以减少对数据库的访问频率。从而减少数据库的压力,提高程序的性能。【内存中存储】成为缓存; 缓存适合存放的数据: 查询频率高且修改频率低 数据安全性低 作为缓存的组件: redis组件 memory组件 e…...
【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第四十七章 字符设备和杂项设备总结回顾
i.MX8MM处理器采用了先进的14LPCFinFET工艺,提供更快的速度和更高的电源效率;四核Cortex-A53,单核Cortex-M4,多达五个内核 ,主频高达1.8GHz,2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...
