当前位置: 首页 > news >正文

SMO算法,platt论文的原始算法及优化算法

 platt论文:[PDF] Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines | Semantic Scholar

算法优化:[PDF] Improvements to Platt's SMO Algorithm for SVM Classifier Design | Semantic Scholar

包含个人platt版SMO代码实现、SMO 优化算法、libsvm:yanzhi0922/SVM: 2024.07.12 (github.com)

数据集获取:LIBSVM Data: Classification, Regression, and Multi-label (ntu.edu.tw)

platt原论文SMO伪代码:

target = desired output vector
point = training point matrix
procedure takeStep(i1,i2)if (i1 == i2) return 0alph1 = Lagrange multiplier for i1y1 = target[i1]E1 = SVM output on point[i1] – y1 (check in error cache)s = y1*y2Compute L, H via equations (13) and (14)if (L == H)return 0k11 = kernel(point[i1],point[i1])k12 = kernel(point[i1],point[i2])k22 = kernel(point[i2],point[i2])eta = k11+k22-2*k12if (eta > 0){a2 = alph2 + y2*(E1-E2)/etaif (a2 < L) a2 = Lelse if (a2 > H) a2 = H}else{Lobj = objective function at a2=LHobj = objective function at a2=Hif (Lobj < Hobj-eps)a2 = Lelse if (Lobj > Hobj+eps)a2 = Helsea2 = alph2}if (|a2-alph2| < eps*(a2+alph2+eps))return 0a1 = alph1+s*(alph2-a2)Update threshold to reflect change in Lagrange multipliersUpdate weight vector to reflect change in a1 & a2, if SVM is linearUpdate error cache using new Lagrange multipliersStore a1 in the alpha arrayStore a2 in the alpha arrayreturn 1
endprocedureprocedure examineExample(i2)y2 = target[i2]alph2 = Lagrange multiplier for i2E2 = SVM output on point[i2] – y2 (check in error cache)r2 = E2*y2if ((r2 < -tol && alph2 < C) || (r2 > tol && alph2 > 0)){if (number of non-zero & non-C alpha > 1){i1 = result of second choice heuristic (section 2.2)if takeStep(i1,i2)return 1}loop over all non-zero and non-C alpha, starting at a random point{i1 = identity of current alphaif takeStep(i1,i2)return 1}loop over all possible i1, starting at a random point{i1 = loop variableif (takeStep(i1,i2)return 1}}return 0
endproceduremain routine:numChanged = 0;examineAll = 1;while (numChanged > 0 | examineAll){numChanged = 0;if (examineAll)loop I over all training examplesnumChanged += examineExample(I)elseloop I over examples where alpha is not 0 & not CnumChanged += examineExample(I)if (examineAll == 1)examineAll = 0else if (numChanged == 0)examineAll = 1
}

以上算法基本原理相同,结果相同,优化是时间复杂度上的优化 ,libsvm时间复杂度最优

相关文章:

SMO算法,platt论文的原始算法及优化算法

platt论文&#xff1a;[PDF] Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines | Semantic Scholar 算法优化&#xff1a;[PDF] Improvements to Platts SMO Algorithm for SVM Classifier Design | Semantic Scholar 包含个人plat…...

2.3 openCv -- 对矩阵执行掩码操作

在矩阵上进行掩模操作相当简单。其基本思想是根据一个掩模矩阵(也称为核)来重新计算图像中每个像素的值。这个掩模矩阵包含的值决定了邻近像素(以及当前像素本身)对新的像素值产生多少影响。从数学角度来看,我们使用指定的值来做一个加权平均。 具体而言,掩模操作通常涉…...

【Django】 js实现动态赋值、显示show隐藏hide效果

文章目录 需要达到的前端效果预览&#xff1a;实现步骤复制bootstrp代码&#xff08;buttons&#xff09;复制bootstrp代码&#xff08;Alert警告框&#xff09;写js测试效果 需要达到的前端效果预览&#xff1a; {% load static %} <!DOCTYPE html> <html lang"…...

qt--做一个拷贝文件器

一、项目要求 使用线程完善文件拷贝器的操作 主窗口不能假死主窗口进度条必须能动改写文件大小的单位&#xff08;自适应&#xff09; 1TB1024GB 1GB1024MB 1MB1024KB 1KB1024字节 二、所需技术 1.QFileDialog 文件对话框 QFileDialog也继承了QDialog类&#xff0c;直接使用静态…...

Eclipse 搭建 C/C++ 开发环境以及eclipse的使用

一、下载、安装 MinGW 1、下载: 下载地址&#xff1a;MinGW - Minimalist GNU for Windows - Browse Files at SourceForge.net 点击“Download Latest Version”即可 下载完成后&#xff0c;得到一个名为 mingw-get-setup.exe 的安装文件。双击运行&#xff0c;安装即可。 …...

【初阶数据结构】复杂度算法题篇

旋转数组 力扣原题 方案一 循环K次将数组所有元素向后移动⼀位&#xff08;代码不通过) 时间复杂度O(n2) 空间复杂度O(1) void rotate(int* nums, int numsSize, int k) {while (k--) {int end nums[numsSize - 1];for (int i numsSize - 1; i > 0; i--) {nums[i] num…...

20240725项目的maven环境报红-重新配置maven

1.在编辑器里面打开项目&#xff0c;导入源码 &#xff08;1&#xff09;找到项目的地址C:\Users\zzz\IdeaProjects\datasys&#xff0c;然后右击用idea编辑器打开。 &#xff08;2&#xff09;idea中上菜单栏打开open&#xff0c;然后输入file&#xff0c;选择源代码文件 2.…...

若依 ruoyi poi Excel合并行的导入

本文仅针对文字相关的合并做了处理 &#xff0c;图片合并及保存需要另做处理&#xff01;&#xff01; 目标&#xff1a;Excel合并行内容的导入 结果&#xff1a; 1. ExcelUtil.java 类&#xff0c;新增方法&#xff1a;判断是否是合并行 /*** 新增 合并行相关代码&#xff1a;…...

优化算法:1.遗传算法(GA)及Python实现

一、定义 遗传算法就像是在模拟“优胜劣汰”的进化过程&#xff0c;通过选择最优秀的个体&#xff0c;交配产生下一代&#xff0c;并引入一定的变异&#xff0c;逐步优化解决问题。 二、具体步骤 初始化种群(Initialization)&#xff1a; 假设你要找到一个迷宫的最佳出口路径。…...

企业化运维(8)Docker容器技术

###1.Docker介绍### 什么是Docker Docker 是一个开源的应用容器引擎&#xff0c;让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中&#xff0c;然后发布到任何流行的 Linux或Windows 机器上&#xff0c;也可以实现虚拟化。容器是完全使用沙箱机制&#xff0c;相互之间…...

Unity C#底层原理(二)

委托 方法的容器&#xff1a;委托可以存储一个或多个方法的引用。可以使用委托对象来调用这些方法。函数/方法的变量类型&#xff1a;委托类型可以像变量一样声明和使用&#xff0c;存储方法的引用。存储、传递方法&#xff1a;委托可以作为参数传递给方法&#xff0c;也可以作…...

计算机网络-配置路由器ACL(访问控制列表)

配置访问控制列表ACL 拓扑结构 拓扑结构如下&#xff1a; 要配置一个ACL&#xff0c;禁止PC0访问PC3&#xff0c;禁止PC4访问PC0&#xff0c;其它正常。 配置Router0 配置接口IP地址&#xff1a; interface fastethernet 0/0 ip address 192.168.1.1 255.255.255.0 no shu…...

51单片机嵌入式开发:20、STC89C52R基于C51嵌入式点阵广告屏的设计

STC89C52R基于C51嵌入式点阵广告屏的设计 1 概述2 LED点阵介绍2.1 特点和优势2.2 工作原理&#xff1a;2.3 使用方法&#xff1a; 3 LED点阵原理3.1 Led点阵内部电路3.2 原理图电路3.3 74HC595 4 软件实现点阵图案的滑动4.1 软件工程代码4.2 Protues仿真 5 总结 配套示例程序 1…...

VLC输出NDI媒体流

目录 1. 下载安装VLC Play 2. 首先在电脑上安装NDI Tools 3. 运行VLC进行输出配置 4. 播放视频 5. 验证 (1)用Studio Monitor验证 (2)用OBS验证 NDI(Network Device Interface)即网络设备接口,是由美国 NewTek 公司开发的免费标准,它可使兼容的视频产品以高质量…...

WiFi 局域网通信 - 发现服务和解析

1. nsdManager nsdManager requireContext().getSystemService(Context.NSD_SERVICE) as NsdManager2. NsdManager.DiscoveryListener 注意&#xff1a;在onStartDiscoveryFailed 和 onStopDiscoveryFailed里不要调用nsdManager.stopServiceDiscovery(this) 方法&#xff0…...

ChatGPT建议前端学习计划

HTML&CSS基础 - 学习HTML标签、CSS属性、页面布局等基础知识 JavaScript基础 - 学习变量、数据类型、控制流、函数等基础知识 jQuery - 学习如何使用jQuery处理文档对象模型&#xff08;DOM&#xff09;、事件、动画等 Ajax - 全称为 Asynchronous JavaScript and XML&…...

YOLO5项目目录最强解析

YOLO5项目目录解析 YOLOv5 项目目录下的文件和目录的结构&#xff0c;以下是对每个目录和文件的解释&#xff1a; 目录 &#x1f4c1; .github: 存放 GitHub 相关配置和文件&#xff0c;如 GitHub Actions 工作流文件、Issue 模板等&#xff0c;用于自动化构建和持续集成等功…...

【python】sklearn基础教程及示例

【python】sklearn基础教程及示例 Scikit-learn&#xff08;简称sklearn&#xff09;是一个非常流行的Python机器学习库&#xff0c;提供了许多常用的机器学习算法和工具。以下是一个基础教程的概述&#xff1a; 1. 安装scikit-learn 首先&#xff0c;确保你已经安装了Python和…...

Linux:传输层(2) -- TCP协议(2)

目录 1. 流量控制 2. 滑动窗口 3. 拥塞控制 4. 延迟应答 5. 捎带应答 6. 面向字节流 7. 粘包问题 8. TCP异常情况 1. 流量控制 接收端处理数据的速度是有限的. 如果发送端发的太快 , 导致接收端的缓冲区被打满 , 这个时候如果发送端继续发送 , 就会造成丢包, 继而引…...

AcWing 802. 区间和

var说明add存储了插入操作&#xff0c;在指定 x x x下标所在位置 a [ x ] c a[x]c a[x]cquery是求 [ L , R ] [L,R] [L,R]区间和用到的数组,最后才用到alls 是存储离散化之后的值 , 对于会访问到的每个下标&#xff0c;统统丢到 a l l s 里面 &#xff0c;会把 x 和 [ L , R …...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...