当前位置: 首页 > news >正文

【论文10】复现代码tips

一、准备工作

1.创建一个虚拟环境

conda create --name drgcnn38 python=3.8.18

2.激活虚拟环境

conda activate drgcnn38

注意事项

在Pycharm中终端(terminal)显示PS而不是虚拟环境base

问题如下所示

解决方法:shell路径改成cmd.exe

重启终端显示虚拟环境

3.安装torch 

conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 cpuonly -c pytorch

安装一系列包

注意事项

Pycharm远程连接Linux服务器实现代码同步

1.工具-->部署-->配置

2.选择SFTP远程连接,路径填与服务器要同步的路径地址

二、代码学习

各部分的作用

  • eye_pre_process:视网膜眼底图像预处理模块。
  • Encoder:编码器训练模块。
  • modules:包含模型结构、损失函数和学习率降低策略。
  • utils:包含一些常用函数和评估指标。
  • BFFN:双眼特征融合网络训练模块。
  • CAM:类别注意力模块。

eye_pre_process

copy.py

# 创建一个ArgumentParser对象,用于处理命令行参数  
parser = argparse.ArgumentParser()  # 添加一个命令行参数 '--image-folder',类型为字符串,默认值为 'D:/cv_paper/lesson/Dataset/ceshi'  
# 这个参数用于指定输入图像的文件夹路径  
parser.add_argument('--image-folder', type=str, default=r'D:/cv_paper/lesson/Dataset/ceshi')  # 添加一个命令行参数 '--output-folder',类型为字符串,默认值为 'D:\cv_paper\lesson/Dataset/ceshi_output'  
# 注意:这里路径中的反斜杠在不同的操作系统中可能需要特别注意,Python字符串中推荐使用原始字符串(r前缀)来避免转义字符的问题  
# 这个参数用于指定输出结果的文件夹路径  
parser.add_argument('--output-folder', type=str, default=r'D:\cv_paper\lesson/Dataset/ceshi_output')  # 添加一个命令行参数 '--crop-size',类型为整数,默认值为512  
# 这个参数用于指定图像裁剪的大小  
parser.add_argument('--crop-size', type=int, default=512, help='crop size of image')  # 添加一个命令行参数 '-n' 或 '--num-processes',类型为整数,默认值为8  
# 这个参数用于指定处理任务时要使用的进程数  
# '-n' 是 '--num-processes' 的简写形式,帮助信息说明了该参数的作用  
parser.add_argument('-n', '--num-processes', type=int, default=8, help='number of processes to use')
# 转换一个包含多个任务的列表,每个任务由文件名、目标路径和裁剪大小组成  
# 对于jobs列表中的每个任务(索引为j),它首先检查是否已经处理了100个任务(作为进度指示),然后调用convert函数来执行实际的图像转换。
def convert_list(i, jobs):  for j, job in enumerate(jobs):  # 每处理100个任务打印一次进度  if j % 100 == 0:  print(f'worker{i} has finished {j} tasks.')  # 解包任务元组并调用convert函数  convert(*job)  # 转换单个图像文件,包括模糊处理、裁剪和保存  
def convert(fname, tgt_path, crop_size):  img = Image.open(fname)  # 打开图像文件  blurred = img.filter(ImageFilter.BLUR)  # 应用模糊滤镜  ba = np.array(blurred)  # 将图像转换为NumPy数组  h, w, _ = ba.shape  # 获取图像的高度、宽度和通道数  # 尝试根据图像的亮度分布来识别前景区域  if w > 1.2 * h:  # 计算左右两侧的最大亮度值  left_max = ba[:, :w // 32, :].max(axis=(0, 1)).astype(int)  right_max = ba[:, -w // 32:, :].max(axis=(0, 1)).astype(int)  max_bg = np.maximum(left_max, right_max)  foreground = (ba > max_bg + 10).astype(np.uint8)  # 识别前景区域  bbox = Image.fromarray(foreground).getbbox()  # 获取前景区域的最小边界框  # 如果边界框太小或不存在,则打印消息并可能设置为None  if bbox is None:  print(f'No bounding box found for {fname} (???)')  else:  left, upper, right, lower = bbox  if right - left < 0.8 * h or lower - upper < 0.8 * h:  print(f'Bounding box too small for {fname}')  bbox = None  else:  bbox = None  # 如果图像已经是合适的宽高比,则不尝试识别前景  # 如果未找到有效的边界框,则使用正方形边界框  if bbox is None:  bbox = square_bbox(img)  # 使用边界框裁剪图像,并调整大小  cropped = img.crop(bbox)  cropped = cropped.resize([crop_size, crop_size], Image.ANTIALIAS)  # 注意:ANTIALIAS可能是个拼写错误,应该是ANTIALIASIS  save(cropped, tgt_path)  # 保存图像  # 返回一个正方形裁剪框的边界  
def square_bbox(img):  w, h = img.size  left = max((w - h) // 2, 0)  upper = 0  right = min(w - (w - h) // 2, w)  lower = h  return (left, upper, right, lower)  # 保存PIL图像到文件  
def save(img, fname):  img.save(fname, quality=100, subsampling=0)  # 注意:subsampling参数可能不是所有格式都支持  # 假设的main函数,用于组织整个流程(注意:这里只是一个示例)  
def main():  # 示例任务列表,每个任务是一个(文件名, 目标路径, 裁剪大小)元组  jobs = [  ('input1.jpg', 'output1_resized.jpg', 256),  ('input2.jpg', 'output2_resized.jpg', 256),  # ... 更多任务  ]  # 假设有一个工作者ID为1  convert_list(1, jobs)  if __name__ == "__main__":  main()  

Encoder 

main.py

# 定义主函数入口  
def main():  # 解析配置参数  args = parse_configuration()  # 加载配置文件  cfg = load_config(args.config)  # 获取配置中保存的路径  save_path = cfg.config_base.config_save_path  # 如果保存路径不存在,则创建该路径  if not os.path.exists(save_path):  os.makedirs(save_path)  # 将配置文件复制到保存路径  copy_config(args.config, cfg.config_base.config_save_path)  # 执行工作函数  worker(cfg)  # 定义工作函数,负责训练、验证和测试模型  
def worker(cfg):  # 根据配置生成模型  model = generate_model(cfg)  # 计算模型总参数数量  total_param = 0  for param in model.parameters():  total_param += param.numel()  print("Parameter: %.2fM" % (total_param / 1e6))  # 打印模型参数数量(单位:百万)  # 根据配置生成训练、验证和测试数据集  train_dataset, test_dataset, val_dataset = generate_dataset(cfg)  # 初始化性能评估器  estimator = PerformanceEvaluator(cfg.config_train.config_criterion, cfg.config_data.config_num_classes)  # 执行训练过程  train(  cfg=cfg,  model=model,  train_dataset=train_dataset,  val_dataset=val_dataset,  estimator=estimator,  )  # 测试最佳验证模型性能  print('This is the performance of the best validation model:')  checkpoint = os.path.join(cfg.config_base.config_save_path, 'best_validation_weights.pt')  cfg.config_train.config_checkpoint = checkpoint  # 设置检查点路径为最佳验证模型  model = generate_model(cfg)  # 重新生成模型以加载权重  evaluate(cfg, model, test_dataset, estimator)  # 评估模型性能  # 测试最终模型性能  print('This is the performance of the final model:')  checkpoint = os.path.join(cfg.config_base.config_save_path, 'final_weights.pt')  cfg.config_train.config_checkpoint = checkpoint  # 设置检查点路径为最终模型  model = generate_model(cfg)  # 重新生成模型以加载权重  evaluate(cfg, model, test_dataset, estimator)  # 评估模型性能  # 如果此脚本作为主程序运行,则调用main函数  
if __name__ == '__main__':  main()

Encoder_predict.py

进行模型的训练,具体来说,它定义了一个训练循环&#x

相关文章:

【论文10】复现代码tips

一、准备工作 1.创建一个虚拟环境 conda create --name drgcnn38 python=3.8.18 2.激活虚拟环境 conda activate drgcnn38 注意事项 在Pycharm中终端(terminal)显示PS而不是虚拟环境base 问题如下所示 解决方法:shell路径改成cmd.exe 重启终端显示虚拟环境 3.安装torch …...

分布式缓存获取以及设置

1. 通用代码 public SysUser getCache(String sysUserId) {String cacheKey "litgery:warehouse:" sysUserId;// 尝试从缓存中获取数据CacheData cacheData redisUtils.get(cacheKey);if (null ! cacheData) {if (Boolean.TRUE.equals(cacheData.getExist())) {re…...

SMO算法,platt论文的原始算法及优化算法

platt论文&#xff1a;[PDF] Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines | Semantic Scholar 算法优化&#xff1a;[PDF] Improvements to Platts SMO Algorithm for SVM Classifier Design | Semantic Scholar 包含个人plat…...

2.3 openCv -- 对矩阵执行掩码操作

在矩阵上进行掩模操作相当简单。其基本思想是根据一个掩模矩阵(也称为核)来重新计算图像中每个像素的值。这个掩模矩阵包含的值决定了邻近像素(以及当前像素本身)对新的像素值产生多少影响。从数学角度来看,我们使用指定的值来做一个加权平均。 具体而言,掩模操作通常涉…...

【Django】 js实现动态赋值、显示show隐藏hide效果

文章目录 需要达到的前端效果预览&#xff1a;实现步骤复制bootstrp代码&#xff08;buttons&#xff09;复制bootstrp代码&#xff08;Alert警告框&#xff09;写js测试效果 需要达到的前端效果预览&#xff1a; {% load static %} <!DOCTYPE html> <html lang"…...

qt--做一个拷贝文件器

一、项目要求 使用线程完善文件拷贝器的操作 主窗口不能假死主窗口进度条必须能动改写文件大小的单位&#xff08;自适应&#xff09; 1TB1024GB 1GB1024MB 1MB1024KB 1KB1024字节 二、所需技术 1.QFileDialog 文件对话框 QFileDialog也继承了QDialog类&#xff0c;直接使用静态…...

Eclipse 搭建 C/C++ 开发环境以及eclipse的使用

一、下载、安装 MinGW 1、下载: 下载地址&#xff1a;MinGW - Minimalist GNU for Windows - Browse Files at SourceForge.net 点击“Download Latest Version”即可 下载完成后&#xff0c;得到一个名为 mingw-get-setup.exe 的安装文件。双击运行&#xff0c;安装即可。 …...

【初阶数据结构】复杂度算法题篇

旋转数组 力扣原题 方案一 循环K次将数组所有元素向后移动⼀位&#xff08;代码不通过) 时间复杂度O(n2) 空间复杂度O(1) void rotate(int* nums, int numsSize, int k) {while (k--) {int end nums[numsSize - 1];for (int i numsSize - 1; i > 0; i--) {nums[i] num…...

20240725项目的maven环境报红-重新配置maven

1.在编辑器里面打开项目&#xff0c;导入源码 &#xff08;1&#xff09;找到项目的地址C:\Users\zzz\IdeaProjects\datasys&#xff0c;然后右击用idea编辑器打开。 &#xff08;2&#xff09;idea中上菜单栏打开open&#xff0c;然后输入file&#xff0c;选择源代码文件 2.…...

若依 ruoyi poi Excel合并行的导入

本文仅针对文字相关的合并做了处理 &#xff0c;图片合并及保存需要另做处理&#xff01;&#xff01; 目标&#xff1a;Excel合并行内容的导入 结果&#xff1a; 1. ExcelUtil.java 类&#xff0c;新增方法&#xff1a;判断是否是合并行 /*** 新增 合并行相关代码&#xff1a;…...

优化算法:1.遗传算法(GA)及Python实现

一、定义 遗传算法就像是在模拟“优胜劣汰”的进化过程&#xff0c;通过选择最优秀的个体&#xff0c;交配产生下一代&#xff0c;并引入一定的变异&#xff0c;逐步优化解决问题。 二、具体步骤 初始化种群(Initialization)&#xff1a; 假设你要找到一个迷宫的最佳出口路径。…...

企业化运维(8)Docker容器技术

###1.Docker介绍### 什么是Docker Docker 是一个开源的应用容器引擎&#xff0c;让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中&#xff0c;然后发布到任何流行的 Linux或Windows 机器上&#xff0c;也可以实现虚拟化。容器是完全使用沙箱机制&#xff0c;相互之间…...

Unity C#底层原理(二)

委托 方法的容器&#xff1a;委托可以存储一个或多个方法的引用。可以使用委托对象来调用这些方法。函数/方法的变量类型&#xff1a;委托类型可以像变量一样声明和使用&#xff0c;存储方法的引用。存储、传递方法&#xff1a;委托可以作为参数传递给方法&#xff0c;也可以作…...

计算机网络-配置路由器ACL(访问控制列表)

配置访问控制列表ACL 拓扑结构 拓扑结构如下&#xff1a; 要配置一个ACL&#xff0c;禁止PC0访问PC3&#xff0c;禁止PC4访问PC0&#xff0c;其它正常。 配置Router0 配置接口IP地址&#xff1a; interface fastethernet 0/0 ip address 192.168.1.1 255.255.255.0 no shu…...

51单片机嵌入式开发:20、STC89C52R基于C51嵌入式点阵广告屏的设计

STC89C52R基于C51嵌入式点阵广告屏的设计 1 概述2 LED点阵介绍2.1 特点和优势2.2 工作原理&#xff1a;2.3 使用方法&#xff1a; 3 LED点阵原理3.1 Led点阵内部电路3.2 原理图电路3.3 74HC595 4 软件实现点阵图案的滑动4.1 软件工程代码4.2 Protues仿真 5 总结 配套示例程序 1…...

VLC输出NDI媒体流

目录 1. 下载安装VLC Play 2. 首先在电脑上安装NDI Tools 3. 运行VLC进行输出配置 4. 播放视频 5. 验证 (1)用Studio Monitor验证 (2)用OBS验证 NDI(Network Device Interface)即网络设备接口,是由美国 NewTek 公司开发的免费标准,它可使兼容的视频产品以高质量…...

WiFi 局域网通信 - 发现服务和解析

1. nsdManager nsdManager requireContext().getSystemService(Context.NSD_SERVICE) as NsdManager2. NsdManager.DiscoveryListener 注意&#xff1a;在onStartDiscoveryFailed 和 onStopDiscoveryFailed里不要调用nsdManager.stopServiceDiscovery(this) 方法&#xff0…...

ChatGPT建议前端学习计划

HTML&CSS基础 - 学习HTML标签、CSS属性、页面布局等基础知识 JavaScript基础 - 学习变量、数据类型、控制流、函数等基础知识 jQuery - 学习如何使用jQuery处理文档对象模型&#xff08;DOM&#xff09;、事件、动画等 Ajax - 全称为 Asynchronous JavaScript and XML&…...

YOLO5项目目录最强解析

YOLO5项目目录解析 YOLOv5 项目目录下的文件和目录的结构&#xff0c;以下是对每个目录和文件的解释&#xff1a; 目录 &#x1f4c1; .github: 存放 GitHub 相关配置和文件&#xff0c;如 GitHub Actions 工作流文件、Issue 模板等&#xff0c;用于自动化构建和持续集成等功…...

【python】sklearn基础教程及示例

【python】sklearn基础教程及示例 Scikit-learn&#xff08;简称sklearn&#xff09;是一个非常流行的Python机器学习库&#xff0c;提供了许多常用的机器学习算法和工具。以下是一个基础教程的概述&#xff1a; 1. 安装scikit-learn 首先&#xff0c;确保你已经安装了Python和…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...