TSPNet代码分析
论文《Realigning Confidence with Temporal Saliency Information for Point-Level Weakly-Supervised Temporal Action Localization》的official code分析
论文解读
代码分析
先看看训练过程,执行main
if __name__ == '__main__':exp = Exp()if exp.config.mode == 'eval':exp.test()else:exp.train()
先实例化EXP
class Exp(object):def __init__(self, exp_type='THUMOS14'):self.config = self._get_config(exp_type)if self.config.seed != -1:self._setup_seed()self.device = self._get_device()def train(self):train_dataset, train_loader = self._get_data(subset='train')test_dataset, test_loader = self._get_data(subset='test')model = self._get_model().to(self.device)criterion = self._get_criterion()optimizer = self._get_optimizer(model)loader = iter(train_loader)for itr in tqdm(range(1, self.config.num_itr + 1), total=self.config.num_itr):if (itr - 1) % (len(train_loader) // self.config.batch_size) == 0:loader = iter(train_loader)train_one_proposal_batch(model, self.device, loader, criterion, optimizer, self.config.batch_size)if itr % self.config.update_fre == 0:update_label(dataset=train_dataset, dataloader=train_loader, model=model, device=self.device, up_threshold=self.config.up_threshold)if itr % 100 == 0:test_proposal(self.config, model, self.device, test_loader, itr)
可以看到获取参数,然后根据mode执行train
首先执行self._get_data,即实例化dataset
def _get_data(self, subset):dataset = PTAL_Dataset(data_path=self.config.data_path,subset=subset,modality=self.config.modality,num_classes=self.config.num_classes,feature_fps=self.config.feature_fps,soft_value=self.config.soft_value)
class PTAL_Dataset(Dataset):def __init__(self,data_path: str,subset: str = 'test',modality: str = 'both',num_classes: int = 20,feature_fps: int = 25,soft_value: float = 0.4):self.data_path = data_pathself.subset = subsetself.modality = modalityself.feature_fps = feature_fpsself.dataset = self.data_path.split('/')[-1]self.cls_dict = json.load(open('./data/dataset_cls_dict.json', 'rb'))[self.dataset]self.num_classes = num_classesself.soft_value = soft_value# Load label filesself.gt = json.load(open(os.path.join(self.data_path, 'gt.json'), 'rb'))self.p_label = pd.read_csv(os.path.join(self.data_path, 'train_df_ts_in_gt.csv')).groupby('video_id')self.fps_dict = json.load(open(os.path.join(self.data_path, 'fps.json'), 'rb'))self.delta_dict = {}# Get video namesself.vid_names = self._get_vidname()# Get proposalsself.proposals, \self.proposals_point, \self.proposals_center_label, \self.proposals_multi_flag, \self.proposals_point_id = self._get_proposals()
主要看看_get_proposals()函数,这个函数用于初始化和更新proposals
def _get_proposals(self, delta_point_dict=None):"""get proposals and generate the center labels from the original points or the updated saliency points"""history_points = []proposals_file = json.load(open(f'{self.data_path}/LAC_proposal_{self.dataset}_{self.subset}.json'))['results']proposals = {}proposals_point = {}proposals_center_label = {}proposals_multi_flag = {}proposals_point_id = {}proposals_mask = {}t_factor = self.feature_fps / 16.0act, bg, multi = 0, 0, 0for idx, name in enumerate(self.vi
相关文章:
TSPNet代码分析
论文《Realigning Confidence with Temporal Saliency Information for Point-Level Weakly-Supervised Temporal Action Localization》的official code分析 论文解读 代码分析 先看看训练过程,执行main if __name__ == __main__:exp = Exp()if exp.config.mode == eval:…...

Ubuntu上安装anaconda创建虚拟环境(各种踩坑版)
之前都是在Windows桌面版进行深度学习的环境部署及训练,今天尝试了一下在Ubuntu上进行环境部署,踩了不少坑,提供一些解决办法给大家避雷。 目录 一、下载和安装anaconda 1. 下载 2. 安装 二、创建虚拟环境 一、下载和安装anaconda 1. …...

DC-5靶机通关
今天我们来学习DC-5靶机!!! 1.实验环境 攻击机:kali2023.2 靶机:DC-5 2.1扫描网段 2.2扫描端口 这里后面这俩端口有点似曾相识啊,在dc3里面好像见过,那咱们给这两个端口来个更详细的扫描&…...

AI学习记录 -使用react开发一个网页,对接chatgpt接口,附带一些英语的学习prompt
实现了如下功能(使用react实现,原创) 实现功能: 1、对接gpt35模型问答,并实现了流式传输(在java端) 2、在实际使用中,我们的问答历史会经常分享给他人,所以下图的 copy …...
MongoDB多数据源配置与切换
在MongoDB中配置和使用多数据源主要涉及以下几个步骤: 定义多个数据源的配置: 在应用程序的配置文件中,定义多个MongoDB的数据源,例如在Spring Boot中可以通过application.yml或application.properties文件进行配置。 创建多个Mo…...

Mongodb入门介绍
文章目录 1、Mongodb:NoSQL数据库,分布式的文档型数据库2、适合场景:3、不适合场景:4、概念5、总结 1、Mongodb:NoSQL数据库,分布式的文档型数据库 2、适合场景: 1、web网站数据存储ÿ…...

docker前端部署
挂载,把自己的目录位置,挂载到容器内的HTML...
指标体系建设的方法论
一、分析痛点 了解当前数仓侧与业务应用方对指标到不到、难使用的痛点及日常指标使用习惯,制定指标中心所需功能并设计指标中心样式。 二、指定指标规范 定义指标类型、指标使用方、确定指标域(这里是数据域)、指标要具备的属性(业务/技术口径、负责人、类型等)。 …...

乐鑫ESP32-H2设备联网芯片,集成多种安全功能方案,启明云端乐鑫代理商
在数字化浪潮的推动下,物联网正以前所未有的速度融入我们的日常生活。然而,随着设备的激增,安全问题也日益成为公众关注的焦点。 乐鑫ESP32-H2致力于为所有开发者提供高性价比的安全解决方案,这款芯片经过专门设计以集成多种安全…...

C++调用Java接口
一、配置Java环境 安装jdk,我这里使用jdk1.8 32位版本,下载地址:https://www.oracle.com/java/technologies/downloads/#java8-windows 下载安装后,设置环境变量: JAVA_HOME C:\Program Files (x86)\Java\jdk-1.…...

C# datetimePicker
1. 直接把控件拉到设计器中,此时不要调整控件的values属性,这样就可以 打开后每次默认显示当天日期。 2. 属性Format long长日期格式默认值short短日期格式Time时间格式custom自定义时间格式在customFormat这个属性设置,比如yyyy-MM-dd HH…...

AI有关的学习和python
一、基本概念 AIGC(AI Generated content AI 生成内容) AI生成的文本、代码、图片、音频、视频。都可以成为AIGC。 Generative AI(生成式AI)所生成的内容就是AIGC AI指代计算机人工智能,模仿人类的智能从而解决问题…...

前端node.js入门
(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 Node.js 入门概览 什么是Node.js? 为什么选择Node.js? 基础安装与环境配置 安装…...
无需标注的数据集
0:人 1:自行车 2:汽车 3:摩托车 4:飞机 5:公交车 6:火车 7:卡车 8:船 9:交通信号灯 10:消火栓 11:停车标志 12:停车计时器…...
C# 抽象工厂模式
栏目总目录 概念 抽象工厂模式是一种创建型设计模式,它提供了一种创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。在抽象工厂模式中,一个抽象的工厂类负责定义创建产品对象的接口,但是具体工厂类将负责创建具体的产…...
java中 两个不同类对象list,属性一样,如何copy
如果您有两个不同的类,但它们拥有相同的属性,并且您想要从一个类的列表复制到另一个类的列表,您可以使用以下方法: 使用循环: 您可以遍历原始列表,并为每个元素创建目标类的新实例。 使用 Stream API&…...

文件上传总结
一、原理 通过界面上的上传功能上传了一个可执行的脚本文件,而WEB端的系统并未对其进行检测或者检测的逻辑做的不够好,使得恶意用户可以通过文件中上传的一句话木马获得操控权 二、绕过方法 1>前端绕过 1.删除前端校验函数 checkFile() 2.禁用js…...

网页突然被恶意跳转或无法打开?DNS污染怎么解决?
前言 在网上冲浪时,我们时常会遭遇DNS污染这一区域性攻击,几乎无人能幸免。受影响时:尝试访问正规网站可能会被错误导向赌博、色情或其他恶意站点。 1.我们为什么需要DNS 当我们想要访问一个网站时,就像拨打朋友的电话号码一样…...

Matlab进阶绘图第65期—带分组折线段的柱状图
带分组折线段的柱状图是在原始柱状图的基础上,在每组柱状图位置处分别添加折线段,以进行对比或添加额外信息。 由于Matlab中未收录带分组折线段的柱状图的绘制函数,因此需要大家自行设法解决。 本文使用自制的BarwithGroupedLine小工具进行…...
EasyMedia转码rtsp视频流flv格式,hls格式,H5页面播放flv流视频
在本文中,我们将介绍如何使用 EasyMedia 将 RTSP 视频流转码为 FLV 和 HLS 格式,并在 H5 页面上播放 FLV 流视频。EasyMedia 是一个支持多种流媒体协议的开源项目,非常适合用于这种转码和流媒体传输的场景。 前提条件 已经安装并配置好 Eas…...

第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...