《Java初阶数据结构》----6.<优先级队列之PriorityQueue底层:堆>
前言
大家好,我目前在学习java。之前也学了一段时间,但是没有发布博客。时间过的真的很快。我会利用好这个暑假,来复习之前学过的内容,并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区进行讨论!!!
喜欢我文章的兄弟姐妹们可以点赞,收藏和评论我的文章。喜欢我的兄弟姐妹们以及也想复习一遍java知识的兄弟姐妹们可以关注我呦,我会持续更新滴,
望支持!!!!!!一起加油呀!!!!
语言只是工具,不能决定你好不好找工作,决定你好不好找工作的是你的能力!!!!!
学历本科及以上就够用了!!!!!!!!!!!!!!!!!!!!!!
本篇博客主要讲解Java基础语法中的
堆的概念及实现、堆的性质、堆的创建、堆的插入与删除、堆的应用。
下一篇文章我们会重点将优先级队列
一、优先级队列
1.1什么是优先级队列
前面我们了解过队列是一种先进先出(FIFO)的数据结构。但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列。此时普通队列就不适用了。因此我们引入优先级队列。
数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。
1.2优先级队列的实现
JDK1.8中的PriorityQueue底层使用了堆这种数据结构
堆:实际就是在完全二叉树的基础上进行了一些调整。
二、堆
2.1堆的概念
如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一 个一维数组中,并满足: Ki <= K2i+1 且 Ki <= K2i+2( Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
2.2堆的性质
堆的性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树。
2.3 堆的存储方式
从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储,
注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节 点,就会导致空间利用率比较低。
将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:
- 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
- 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
- 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子
2.4 堆的创建
2.4.1 堆向下调整
根节点的左右子树满足堆的特性(创建堆)
对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?
仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。
向下过程(以小堆为例):
1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在
parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标
将parent与较小的孩子child比较,
如果:
- parent小于较小的孩子child,调整结束
- 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子 树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。
代码实现
public void shiftDown(int[] array, int parent) {// child先标记parent的左孩子,因为parent可能右左没有右int child = 2 * parent + 1;int size = array.length;while (child < size) {// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记if(child+1 < size && array[child+1] < array[child]){child += 1;}// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了if (array[parent] <= array[child]) {break;}else{// 将双亲与较小的孩子交换int t = array[parent];array[parent] = array[child];array[child] = t;// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整parent = child;child = parent * 2 + 1;}}
}
注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。 时间复杂度分析:
最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(logN)
2.4.2根节点的左右子树不满足堆的特性(创建堆)
那对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性,又该如何调整呢?
代码示例
public static void createHeap(int[] array) {// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整int root = ((array.length-2)>>1);for (; root >= 0; root--) {shiftDown(array, root);}
}
2.4.3 建堆的时间复杂度
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是 近似值,多几个节点不影响最终结果):
因此:建堆的时间复杂度为O(N)。
2.5 堆的插入与删除
2.5.1 堆的插入
堆的插入总共需要两个步骤:
1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)
2. 将最后新插入的节点向上调整,直到满足堆的性质
代码实现
public void shiftUp(int child) {// 找到child的双亲int parent = (child - 1) / 2;while (child > 0) {// 如果双亲比孩子大,parent满足堆的性质,调整结束if (array[parent] > array[child]) {break;}else{// 将双亲与孩子节点进行交换 int t = array[parent];array[parent] = array[child];array[child] = t;// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增child = parent;parent = (child - 1) / 1;}}
}
2.5.2 堆的删除
注意:堆的删除一定删除的是堆顶元素。具体如下:
1. 将堆顶元素对堆中最后一个元素交换
2. 将堆中有效数据个数减少一个
3. 对堆顶元素进行向下调整
2.5用堆模拟优先级队列
public class MyPriorityQueue {// 演示作用,不再考虑扩容部分的代码private int[] array = new int[100];private int size = 0;public void offer(int e) {array[size++] = e;shiftUp(size - 1);}public int poll() {int oldValue = array[0];array[0] = array[--size];shiftDown(0);return oldValue;}public int peek() {return array[0];}
}
三、堆的应用
3.1 PriorityQueue的实现
用堆作为底层结构封装优先级队列
3.2 堆排序
堆排序即利用堆的思想来进行排序,总共分为两个步骤:
①建堆
升序:建大堆
降序:建小堆
②利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
相关文章:

《Java初阶数据结构》----6.<优先级队列之PriorityQueue底层:堆>
前言 大家好,我目前在学习java。之前也学了一段时间,但是没有发布博客。时间过的真的很快。我会利用好这个暑假,来复习之前学过的内容,并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区…...
Matrix Equation(高斯线性异或消元+bitset优化)
题目: 登录—专业IT笔试面试备考平台_牛客网 思路: 我们发现对于矩阵C可以一列一列求。 mod2,当这一行相乘1的个数为奇数时,z(i,j)为1,偶数为0,是异或消元。 对于b[i,j]*c[i,j],b[i,j]可以…...

【一图学技术】2.API测试9种方法图解
9种API测试方法 冒烟测试:冒烟测试是一种快速的表面级测试,用于验证软件的基本功能是否正常工作,以确定是否值得进行更详细的测试。功能测试:功能测试是验证软件是否符合预期功能要求的测试类型。它涉及对每个功能进行测试&#…...

力扣刷题----42. 接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图…...

【论文精读】 | 基于图表示的视频抑郁症识别的两阶段时间建模框架
文章目录 0、Description1、Introduction2、Related work2.1 Relationship between depression and facial behaviours2.2 Video-based automatic depression analysis2.3 Facial graph representation 3、The proposed two-stage approach3.1 Short-term depressive behaviour…...
采集PCM,将base64片段转换为wav音频文件
需求 开始录音——监听录音数据——结束录音 在监听录音数据过程中:客户端每100ms给前端传输一次数据(pcm数据转成base64),前端需要将base64片段解码、合并、添加WAV头、转成File、上传到 OSS之后将 url 给到服务端处理。 {num…...

eclipse ui bug
eclipse ui bug界面缺陷,可能项目过多,特别maven项目过多,下载,自动编译,加载更新界面异常 所有窗口死活Restore不回去了 1)尝试创建项目,还原界面,失败 2)关闭所有窗口&…...
前端获取blob文件格式的两种格式
第一种,后台传递给前台是base64格式的JSON数据 这时候前台拿到base64格式的数据可以通过内置的atob解码方法结合new Uint8Array和new Blob方法转换成blob类型的数据格式,然后可以使用blob数据格式进行操作,虽然base64转换成blob要经过很多步骤,但幸运的是这些步骤都是固定的,因…...

向日葵RCE复现(CNVD-2022-10270/CNVD-2022-03672)
一、环境 1.1 网上下载低版本的向日葵<2022 二、开始复现 2.1 在目标主机上打开旧版向日葵 2.2 首先打开nmap扫描向日葵主机端口 2.3 在浏览器中访问ip端口号cgi-bin/rpc?actionverify-haras (端口号:每一个都尝试,直到获取到session值…...
Postman中的负载均衡测试:确保API的高可用性
Postman中的负载均衡测试:确保API的高可用性 在微服务架构和分布式系统中,API的负载均衡是确保系统高可用性和可扩展性的关键技术之一。Postman作为一个多功能的API开发和测试平台,提供了多种工具来帮助测试人员模拟高负载情况下的API表现。…...

anaconda+tensorflow+keras+jupyter notebook搭建过程(CPU版)
AnacondaTensorFlowKeras 环境搭建教程...

LitCTF2024赛后web复现
复现要求:看wp做一遍,自己做一遍,第二天再做一遍。(一眼看出来就跳过) 目录 [LitCTF 2024]浏览器也能套娃? [LitCTF 2024]一个....池子? [LitCTF 2024]高亮主题(划掉)背景查看器 [LitCTF 2…...

Elasticsearch:跨集群使用 ES|QL
警告:ES|QL 的跨集群搜索目前处于技术预览阶段,可能会在未来版本中更改或删除。Elastic 将努力解决任何问题,但技术预览中的功能不受官方 GA 功能的支持 SLA 约束。 使用 ES|QL,你可以跨多个集群执行单个查询。 前提: …...
学习笔记4:docker和k8s选择简述
docker和 k8s 占用资源 使用客户体量Docker 和 Kubernetes(K8s)都是流行的容器化技术,但它们在资源管理和使用上有一些不同。以下是关于两者资源占用和使用客户体量的详细比较,基于具体数据和信息: Docker 资源占用…...
关于锁策略
在Java中对于多线程来说,锁是一种重要且必不可少的东西,那么我们将如何使用以及在什么时候使用什么样的锁呢?请各位往下看 悲观锁VS乐观锁 悲观锁: 在多线程环境中,冲突是非常常见的,所以在执行操作之前…...

昇思25天学习打卡营第3天|基础知识-数据集Dataset
目录 环境 环境 导包 数据集加载 数据集迭代 数据集常用操作 shuffle map batch 自定义数据集 可随机访问数据集 可迭代数据集 生成器 MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transfor…...

C++11新特性——智能指针——参考bibi《 原子之音》的视频以及ChatGpt
智能指针 一、内存泄露1.1 内存泄露常见原因1.2 如何避免内存泄露 二、实例Demo2.1 文件结构2.2 Dog.h2.3 Dog.cpp2.3 mian.cpp 三、独占式智能指针:unique _ptr3.1 创建方式3.1.1 ⭐从原始(裸)指针转换:3.1.2 ⭐⭐使用 new 关键字直接创建:3.1.3 ⭐⭐⭐…...

“微软蓝屏”全球宕机,敲响基础软件自主可控警钟
上周五,“微软蓝屏”“感谢微软 喜提假期”等词条冲上热搜,全球百万打工人受此影响,共同见证这一历史性事件。据微软方面发布消息称,旗下Microsoft 365系列服务出现访问中断。随后在全球范围内,包括企业、政府、个人在…...
【Linux C | 网络编程】进程间传递文件描述符socketpair、sendmsg、recvmsg详解
我们的目的是,实现进程间传递文件描述符,是指 A进程打开文件fileA,获得文件描述符为fdA,现在 A进程要通过某种方法,传递fdA,使得另一个进程B,获得一个新的文件描述符fdB,这个fdB在进程B中的作用…...
高并发内存池(六)Page Cache回收功能的实现
当Page Cache接收了一个来自Central Cache的Span,根据Span的起始页的_pageId来对前一页所对应的Span进行查找,并判断该Span,是否处于使用状态,从而看是否可以合并,如果可以合并继续向前寻找。 当该Span前的空闲Span查…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...