当前位置: 首页 > news >正文

Apache Doris + Paimon 快速搭建指南|Lakehouse 使用手册(二)

湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,Apache Doris 持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。

为便于用户快速入门,我们将通过系列文章介绍 Apache Doris 与各类主流数据湖格式及存储系统的湖仓一体架构搭建指南,包括 Hudi、Iceberg、Paimon、OSS、Delta Lake、Kudu、BigQuery 等。目前,我们已经发布了 Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一),通过此文你可了解到在 Docker 环境下,如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境。

本文我们将再续前言,为大家介绍 Lakehouse 使用手册(二)之 Apache Doris + Apache Paimon 搭建指南。

Apache Doris + Apache Paimon

Apache Paimon 是一种数据湖格式,并创新性地将数据湖格式和 LSM 结构的优势相结合,成功将高效的实时流更新能力引入数据湖架构中,这使得 Paimon 能够实现数据的高效管理和实时分析,为构建实时湖仓架构提供了强大的支撑。

为了充分发挥 Paimon 的能力,提高对 Paimon 数据的查询效率,Apache Doris 对 Paimon 的多项最新特性提供了原生支持:

  • 支持 Hive Metastore、FileSystem 等多种类型的 Paimon Catalog。
  • 原生支持 Paimon 0.6 版本发布的 Primary Key Table Read Optimized 功能。
  • 原生支持 Paimon 0.8 版本发布的 Primary Key Table Deletion Vector 功能。

基于 Apache Doris 的高性能查询引擎和 Apache Paimon 高效的实时流更新能力,用户可以实现:

  • 数据实时入湖: 借助 Paimon 的 LSM-Tree 模型,数据入湖的时效性可以降低到分钟级;同时,Paimon 支持包括聚合、去重、部分列更新在内的多种数据更新能力,使得数据流动更加灵活高效。
  • 高性能数据处理分析: Paimon 所提供的 Append Only Table、Read Optimized、Deletion Vector 等技术,可与 Doris 强大的查询引擎对接,实现湖上数据的快速查询及分析响应。

未来 Apache Doris 将会逐步支持包括 Time Travel、增量数据读取在内的 Apache Paimon 更多高级特性,共同构建统一、高性能、实时的湖仓平台。

本文将会再 Docker 环境中,为读者讲解如何快速搭建 Apache Doris + Apache Paimon 测试 & 演示环境,并展示各功能的使用操作。

使用指南

本文涉及脚本&代码从该地址获取:https://github.com/apache/doris/tree/master/samples/datalake/iceberg_and_paimon

01 环境准备

本文示例采用 Docker Compose 部署,组件及版本号如下:

Docker Compose 部署组件及版本号.png

Apache Doris 2.1.5 为全新发布:| 下载地址 | Release Notes

02 环境部署

1. 启动所有组件

bash ./start_all.sh

2. 启动后,可以使用如下脚本,登陆 Flink 命令行或 Doris 命令行:

bash ./start_flink_client.sh
bash ./start_doris_client.sh

03 数据准备

首先登陆 Flink 命令行后,可以看到一张预构建的表。表中已经包含一些数据,我们可以通过 Flink SQL 进行查看。

Flink SQL> use paimon.db_paimon;
[INFO] Execute statement succeed.Flink SQL> show tables;
+------------+
| table name |
+------------+
|   customer |
+------------+
1 row in setFlink SQL> show create table customer;
+------------------------------------------------------------------------+
|                                                                 result |
+------------------------------------------------------------------------+
| CREATE TABLE `paimon`.`db_paimon`.`customer` (`c_custkey` INT NOT NULL,`c_name` VARCHAR(25),`c_address` VARCHAR(40),`c_nationkey` INT NOT NULL,`c_phone` CHAR(15),`c_acctbal` DECIMAL(12, 2),`c_mktsegment` CHAR(10),`c_comment` VARCHAR(117),CONSTRAINT `PK_c_custkey_c_nationkey` PRIMARY KEY (`c_custkey`, `c_nationkey`) NOT ENFORCED
) PARTITIONED BY (`c_nationkey`)
WITH ('bucket' = '1','path' = 's3://warehouse/wh/db_paimon.db/customer','deletion-vectors.enabled' = 'true'
)|
+-------------------------------------------------------------------------+
1 row in setFlink SQL> desc customer;
+--------------+----------------+-------+-----------------------------+--------+-----------+
|         name |           type |  null |                         key | extras | watermark |
+--------------+----------------+-------+-----------------------------+--------+-----------+
|    c_custkey |            INT | FALSE | PRI(c_custkey, c_nationkey) |        |           |
|       c_name |    VARCHAR(25) |  TRUE |                             |        |           |
|    c_address |    VARCHAR(40) |  TRUE |                             |        |           |
|  c_nationkey |            INT | FALSE | PRI(c_custkey, c_nationkey) |        |           |
|      c_phone |       CHAR(15) |  TRUE |                             |        |           |
|    c_acctbal | DECIMAL(12, 2) |  TRUE |                             |        |           |
| c_mktsegment |       CHAR(10) |  TRUE |                             |        |           |
|    c_comment |   VARCHAR(117) |  TRUE |                             |        |           |
+--------------+----------------+-------+-----------------------------+--------+-----------+
8 rows in setFlink SQL> select * from customer order by c_custkey limit 4;
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
| c_custkey |             c_name |                      c_address | c_nationkey |         c_phone | c_acctbal | c_mktsegment |                      c_comment |
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
|         1 | Customer#000000001 |              IVhzIApeRb ot,c,E |          15 | 25-989-741-2988 |    711.56 |     BUILDING | to the even, regular platel... |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak |          13 | 23-768-687-3665 |    121.65 |   AUTOMOBILE | l accounts. blithely ironic... |
|         3 | Customer#000000003 |                   MG9kdTD2WBHm |           1 | 11-719-748-3364 |   7498.12 |   AUTOMOBILE |  deposits eat slyly ironic,... |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tl... |          15 | 25-430-914-2194 |   3471.53 |     BUILDING | cial ideas. final, furious ... |
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
4 rows in set

04 数据查询

如下所示,Doris 集群中已经创建了名为paimon 的 Catalog(可通过 SHOW CATALOGS 查看)。以下为该 Catalog 的创建语句:

-- 已创建,无需执行
CREATE CATALOG `paimon` PROPERTIES ("type" = "paimon","warehouse" = "s3://warehouse/wh/","s3.endpoint"="http://minio:9000","s3.access_key"="admin","s3.secret_key"="password","s3.region"="us-east-1"
);

你可登录到 Doris 中查询 Paimon 的数据:

mysql> use paimon.db_paimon;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -ADatabase changed
mysql> show tables;
+---------------------+
| Tables_in_db_paimon |
+---------------------+
| customer            |
+---------------------+
1 row in set (0.00 sec)mysql> select * from customer order by c_custkey limit 4;
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address                             | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
|         1 | Customer#000000001 | IVhzIApeRb ot,c,E                     |          15 | 25-989-741-2988 |    711.56 | BUILDING     | to the even, regular platelets. regular, ironic epitaphs nag e                                         |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak        |          13 | 23-768-687-3665 |    121.65 | AUTOMOBILE   | l accounts. blithely ironic theodolites integrate boldly: caref                                        |
|         3 | Customer#000000003 | MG9kdTD2WBHm                          |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tlp2iQ6ZcO3J |          15 | 25-430-914-2194 |   3471.53 | BUILDING     | cial ideas. final, furious requests across the e                                                       |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
4 rows in set (1.89 sec)

05 读取增量数据

我们可以通过 Flink SQL 更新 Paimon 表中的数据:

Flink SQL> update customer set c_address='c_address_update' where c_nationkey = 1;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: ff838b7b778a94396b332b0d93c8f7ac

等 Flink SQL 执行完毕后,在 Doris 中可直接查看到最新的数据:

mysql> select * from customer where c_nationkey=1 limit 2;
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address       | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
|         3 | Customer#000000003 | c_address_update |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |
|       513 | Customer#000000513 | c_address_update |           1 | 11-861-303-6887 |    955.37 | HOUSEHOLD    | press along the quickly regular instructions. regular requests against the carefully ironic s          |
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
2 rows in set (0.19 sec)

Benchmark

我们在 Paimon(0.8)版本的 TPCDS 1000 数据集上进行了简单的测试,分别使用了 Apache Doris 2.1.5 版本和 Trino 422 版本,均开启 Primary Key Table Read Optimized 功能。

Doris vs Trino Benchmark.png

从测试结果可以看到,Doris 在标准静态测试集上的平均查询性能是 Trino 的 3 -5 倍,后续我们将针对 Deletion Vector 进行优化,进一步提升真实业务场景下的查询效率。

查询优化

对于基线数据来说,Apache Paimon 在 0.6 版本中引入 Primary Key Table Read Optimized 功能后,使得查询引擎可以直接访问底层的 Parquet/ORC 文件,大幅提升了基线数据的读取效率。对于尚未合并的增量数据( INSERT、UPDATE 或 DELETE 所产生的数据增量)来说,可以通过 Merge-on-Read 的方式进行读取。此外,Paimon 在 0.8 版本中还引入的 Deletion Vector 功能,能够进一步提升查询引擎对增量数据的读取效率。

Apache Doris 支持通过原生的 Reader 读取 Deletion Vector 并进行 Merge on Read,我们通过 Doris 的 EXPLAIN 语句,来演示在一个查询中,基线数据和增量数据的查询方式。

mysql> explain verbose select * from customer where c_nationkey < 3;
+------------------------------------------------------------------------------------------------------------------------------------------------+
| Explain String(Nereids Planner)                                                                                                                |
+------------------------------------------------------------------------------------------------------------------------------------------------+
| ...............                                                                                                                                |
|                                                                                                                                                |
|   0:VPAIMON_SCAN_NODE(68)                                                                                                                      |
|      table: customer                                                                                                                           |
|      predicates: (c_nationkey[#3] < 3)                                                                                                         |
|      inputSplitNum=4, totalFileSize=238324, scanRanges=4                                                                                       |
|      partition=3/0                                                                                                                             |
|      backends:                                                                                                                                 |
|        10002                                                                                                                                   |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-15cee5b7-1bd7-42ca-9314-56d92c62c03b-0.orc start: 0 length: 66600 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-5d50255a-2215-4010-b976-d5dc656f3444-0.orc start: 0 length: 44501 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=2/bucket-0/data-e98fb7ef-ec2b-4ad5-a496-713cb9481d56-0.orc start: 0 length: 64059 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=0/bucket-0/data-431be05d-50fa-401f-9680-d646757d0f95-0.orc start: 0 length: 63164 |
|      cardinality=18751, numNodes=1                                                                                                             |
|      pushdown agg=NONE                                                                                                                         |
|      paimonNativeReadSplits=4/4                                                                                                                |
|      PaimonSplitStats:                                                                                                                         |
|        SplitStat [type=NATIVE, rowCount=1542, rawFileConvertable=true, hasDeletionVector=true]                                                 |
|        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 |
|        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 |
|      tuple ids: 0
| ...............                                                                                                           |                                                                                                  |
+------------------------------------------------------------------------------------------------------------------------------------------------+
67 rows in set (0.23 sec)

可以看到,对于刚才通过 Flink SQL 更新的表,包含 4 个分片,并且全部分片都可以通过 Native Reader 进行访问(paimonNativeReadSplits=4/4)。并且第一个分片的hasDeletionVector的属性为 true,表示该分片有对应的 Deletion Vector,读取时会根据 Deletion Vector 进行数据过滤。

结束语

以上是基于 Apache Doris 与 Apache Paimon 快速搭建测试 / 演示环境的详细指南,后续我们还将陆续推出 Apache Doris 与各类主流数据湖格式及存储系统构建湖仓一体架构的系列指南,包括 Iceberg、OSS、Delta Lake 等,欢迎持续关注。

相关文章:

Apache Doris + Paimon 快速搭建指南|Lakehouse 使用手册(二)

湖仓一体&#xff08;Data Lakehouse&#xff09;融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势&#xff0c;帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中&#xff0c;Apache Doris 持续加深与数据湖的融合&#xff0c;已演进出一套成熟…...

Inno setup pascal编码下如何美化安装界面支持带边框,圆角,透明阴影窗口

inno setup自带的安装界面太老套了&#xff0c;如何实现类似网易&#xff0c;微信那种带界面的安装&#xff1f;一般有两种思路&#xff1a;提供一个单独的下载器&#xff0c;然后通过下载器将你用innosetup 打包后的软件下载下来&#xff0c;然后&#xff0c;静默安装这个包&a…...

SQL语句(以MySQL为例)——单表、多表查询

笛卡尔积&#xff08;或交叉连接&#xff09;: 笛卡尔乘积是一个数学运算。假设我有两个集合 X 和 Y&#xff0c;那么 X 和 Y 的笛卡尔积就是 X 和 Y 的所有可能组合&#xff0c;也就是第一个对象来自于 X&#xff0c;第二个对象来自于 Y 的所有可能。组合的个数即为两个集合中…...

C++第二十八弹---进一步理解模板:特化和分离编译

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 目录 1. 非类型模板参数 2. 模板的特化 2.1 概念 2.2 函数模板特化 2.3 类模板特化 2.3.1 全特化 2.3.2 偏特化 2.3.3 类模板特化应用示例 3. …...

正则表达式的独占模式,懒惰模式等有那些区别

正则表达式的独占模式、懒惰模式&#xff08;也称为非贪婪模式&#xff09;和贪婪模式&#xff08;默认模式&#xff09;在匹配行为上存在显著的区别。以下是这三种模式的详细解释和区别&#xff1a; 1、贪婪模式&#xff08;Greedy&#xff09;&#xff1a; 默认情况下&…...

【INTEL(ALTERA)】Quartus® Prime Pro Edition 软件 v24.2 中,哪些 Agilex™ 5 IP 功能的硬件验证有限?

目录 说明 解决方法 说明 如下表所示&#xff0c;Quartus Prime 专业版软件 24.2 版为 Agilex™ 5 IP 或功能提供有限的硬件支持。此外&#xff0c;设备的设备型号、比特流和固件尚未最终确定。 影响 Agilex™ 5 特定功能的已知问题可参阅 Agilex 5 知识库文章搜索。 解决…...

Lua编程

文章目录 概述lua数据类型元表注意 闭包表现 实现 lua/c 接口编程skynet中调用层次虚拟栈C闭包注册表userdatalightuserdata 小结 概述 这次是skynet&#xff0c;需要一些lua/c相关的。写一篇博客&#xff0c;记录下。希望有所收获。 lua数据类型 boolean , number , string…...

2019数字经济公测大赛-VMware逃逸

文章目录 环境搭建漏洞点exp 环境搭建 ubuntu :18.04.01vmware: VMware-Workstation-Full-15.5.0-14665864.x86_64.bundle 这里环境搭不成功。。patch过后就报错&#xff0c;不知道咋搞 发现可能是IDA加载后的patch似乎不行对原来的patch可能有影响&#xff0c;重新下了patch&…...

如何改桥接模式

桥接模式主要是解决 路由功能的 因为NAT多层 主要是网络连接数太多时 然后路由器要好 不然光猫 比差路由要强的 光猫 请注意&#xff0c;对光猫的任何设置进行修改前&#xff0c;请一定要备份光猫的配置文件&#xff0c;并在每次修改前都截图保存原始设置信息&#xff01;不要…...

江科大/江协科技 STM32学习笔记P13

文章目录 TIM定时中断1、TIM简介计数器PSC预分频器ARR自动重装寄存器 2、定时器类型基本定时器主模式触发DAC 通用定时器高级定时器 3、定时器原理定时中断基本结构预分频器时序计数器时序RCC时钟树 TIM定时中断 1、TIM简介 定时器的基准时钟一般都是主频72MHz&#xff0c;如果…...

loadrunner录制解决提示安全问题

点击页面任意位置&#xff0c;输入&#xff1a; thisisunsafe...

为什么要读写分离?如何实现业务系统读写分离?

信息化水平提升&#xff0c;很多企业已经接受并高频使用多样的业务系统进行日常作业&#xff0c;而在不断的使用过程中&#xff0c;部分行业和业务&#xff0c;如&#xff1a;直播电商、基础制造、公关传媒等&#xff0c;由于自身特点的原因&#xff0c;常常积累了海量的数据。…...

C#基础——类、构造函数和静态成员

类 类是一个数据类型的蓝图。构成类的方法和变量称为类的成员&#xff0c;对象是类的实例。类的定义规定了类的对象由什么组成及在这个对象上可执行什么操作。 class 类名 { (访问属性) 成员变量; (访问属性) 成员函数; } 访问属性&#xff1a;public&#xff08;公有的&…...

hadoop学习(二)

一.MapReduce 1.1定义&#xff1a;是一个分布式运算程序的编程框架 1.2核心功能&#xff1a;将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序&#xff0c;并发运行在一个Hadoop集群上。 1.3优点 1&#xff09;易于编程 它简单的实现一些接口&#…...

WXZ196微机消谐装置的运行方式了解一下

WXZ196微机消谐装置是一种用于抑制铁磁谐振的设备&#xff0c;可以在电力系统中快速消除各种频率的铁磁谐振&#xff0c;同时可以区分过电压、铁磁谐振以及单相接地&#xff0c;并给出相应的报警信号。该装置采用高速增强型单片机作为核心元件&#xff0c;对PT开口三角电压进行…...

单链表的建立

一.前言 单链表的建立一共有两种方法&#xff0c;一种是头插法&#xff0c;将元素插入在链表的头部&#xff0c;也叫前插法。另外一种则就是尾插法&#xff0c;将元素插入在链表尾部&#xff0c;也叫后插法。 二. 头插法 首先从一个空表开始&#xff0c;重复读入数据&#xff1…...

Shell脚本编程学习

IPv4和IPv6有什么区别&#xff1f; - 知乎 (zhihu.com) Shell 是一个命令解释权&#xff0c;它为用户提供了一个向 Linux 内核发送请求以便运行程序界面系统级程序&#xff0c;用户可以用 Shell 来启动、挂起、停止甚至是编写一些程序。 可以查看当前系统的进程 ps -ef...

从宏基因组量化细菌生长动态

Introduciton 了解细菌在各种环境中的生长动态对于人类健康和环境监测等广泛领域至关重要。传统研究细菌生长的方法往往依赖于培养技术&#xff0c;这不仅耗时&#xff0c;而且对易培养的物种有偏向。然而&#xff0c;随着宏基因组测序技术的兴起&#xff0c;我们现在可以直接…...

Linux---git工具

目录 初步了解 基本原理 基本用法 安装git 拉取远端仓库 提交三板斧 1、添加到缓存区 2、提交到本地仓库 3、提交到远端 其他指令补充 多人协作管理 windows用户提交文件 Linux用户提交文件 初步了解 在Linux中&#xff0c;git是一个指令&#xff0c;可以帮助我们做…...

【JavaScript】函数的动态传参

Javacript&#xff08;简称“JS”&#xff09;是一种具有函数优先的轻量级&#xff0c;解释型或即时编译型的编程语言。虽然它是作为开发Web页面的脚本语言而出名&#xff0c;但是它也被用到了很多非浏览器环境中&#xff0c;JavaScript基于原型编程、多范式的动态脚本语言&…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...