多层多输入的CNN-LSTM时间序列回归预测(卷积神经网络-长短期记忆网络)——附代码
目录
摘要:
卷积神经网络(CNN)的介绍:
长短期记忆网络(LSTM)的介绍:
CNN-LSTM:
Matlab代码运行结果:
本文Matlab代码+数据分享:
摘要:
本文使用CNN-LSTM混合神经网络对时间序列数据进行回归预测。本模型的输入数据个数可以自行选择,可以为多输入、也可以为单输入,使用Matlab自带的数据集进行训练,可以轻松的更换数据集以实现自己的功能。首先使用CNN网络对输入数据进行深度特征提取,然后将提取到的抽象特征进行压缩,将压缩后的数据输入后续的LSTM网络进行回归预测。相比一般的单层网络结构,本文所提出的CNN-LSTM包含了三层CNN和三层LSTM网络,因此本文网络预测的准确度有了一定的提升。
本文代码结构清晰,实现效果很好,出图美观,适合初学者进行模仿学习或用于数学建模方面。
有关于CNN-LSTM进行多输入特征分类的代码,可以看我之前发的文章。
卷积神经网络(CNN)的介绍:
卷积神经网络(ConvolutionalNeuralNetworks,CNN)能有效的提取二维图像和高维数据的特征。卷积神经网络具有减少内存占用、减少网络参数、缓解过拟合问题等优势,因此基于卷积神经网络时间序列预测模型。
卷积神经网络由输入层、隐含层和输出层组成,其中隐含层又分为卷积层、池化层和全连接层。结构如图:
(1)输入层:
输入层的作用是预处理输入的图像或数据。预处理方法能够减少数据量纲的差异对模型的影响,可以提高模型的学习效率。
(2)隐含层:
隐含层包括卷积层、池化层、全连接层,作用是完成特征的提取和学习。
(a)卷积层:卷积层中最重要的是卷积核。卷积核的个数、大小和形状,需要根据数据或图像的实际情况确定。一维卷积通常用来处理一维、二维数据或图像,二维卷积常用于二维数据矩阵的卷积操作,三维卷积常用于医学及视频处理领域的三维数据。步长是指进行卷积计算时,每次移动的格数。即步长为几时,卷积核每次向右移动几个格子。在模型训练时,可以根据需要改变步长、卷积核的大小和数量。卷积操作的具体步骤以图举例说明。图中左侧的4×4的矩阵代表输入,中间3×3的矩阵为卷积核,步长设为1,则右侧的矩阵为特征结果图。卷积操作过程为:将卷积核在输入数据或图像上每次先向右平移一个步长,将卷积核矩阵和输入数据对应位置矩阵进行内积计算,输出一个数值,放在特征结果图的对应位置上。水平方向完成卷积计算后再向下移动一个步长,重复卷积计算步骤,最终得到输入数据或图像的特征结果图,
(b)池化层:池化层也称采样层,主要作用是采样降维,即在不改变数据或图像特征的前提下,将数据的维数尽可能地降低。通过池化函数,将特征图某点替换为其相邻输出的全局特征。按照滤波器映射范围内像素点取值的不同,可分为平均池化和最大池化。平均池化:计算所有非零数据的平均值并用作输出。以2×2池化为例,左侧为卷积操作后得到的特征结果图,池化滤波器在特征结果图上每次平移两个步长,得到特征结果图被划分成四部分,分别计算非零像素点的平均值,并作为该位置的输出。
(c)全连接层:全连接层的作用是将特征映射到样本标记空间。通过全连接层将神经元权重连接,并向下一层网络传递数据信息。即通过矩阵乘法对特征向量加权求和计算,并通过激活函数得到全连接层的输出
(3)输出层:
增加一层回归层,并将全连接层的输出值输入到回归层中,得到神经网络的最后输出,即神经网络非线性映射的非线性变换结果。
长短期记忆网络(LSTM)的介绍:
LSTM和循环神经网络都是链式结构,其特殊性在于LSTM加入门结构来存储细胞的状态。因为门结构的存在,随着迭代层数的增加,激活函数的反向误差仍能向下传递,避免长期依赖问题
LSTM是RNN的一种变形,隐含层加入忘记门、输入门和输出门使其不仅能接受上一层神经元的输出,还能通过门结构选择性的保留历史时刻的有用信息。
LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为它可以记忆不定时间长度的数值,区块中有一个gate能够决定input是否重要到能被记住及能不能被输出output。
最左边函数依情况可能成为区块的input,右边三个会经过gate决定input是否能传入区块,左边第二个为inputgate,如果这里产出近似于零,将把这里的值挡住,不会进到下一层。左边第三个是forgetgate,当这产生值近似于零,将把区块里记住的值忘掉。第四个也就是最右边的input为outputgate,他可以决定在区块记忆中的input是否能输出。
CNN-LSTM:
考虑到CNN和LSTM分别在提取高维数据特征信息和处理时间序列数据方面的优势,设计CNN-LSTM模型来预测实现序列。
卷积神经网络特有的卷积核池化操作能很好的提取数据的特征信息,而长短期记忆神经网络具有很强的记忆性,对序列化数据处理效果较好。基于两种神经网络模型的优势考虑,将两种模型组合。
Matlab代码运行结果:
本文Matlab代码+数据分享:
相关文章:

多层多输入的CNN-LSTM时间序列回归预测(卷积神经网络-长短期记忆网络)——附代码
目录 摘要: 卷积神经网络(CNN)的介绍: 长短期记忆网络(LSTM)的介绍: CNN-LSTM: Matlab代码运行结果: 本文Matlab代码数据分享: 摘要: 本文使用CNN-LSTM混合神经网…...

mybatis中获取参数的两种方式:${}和#{}
目录 1.#{} 2.${} 3.总结 1.#{} 本质是占位符赋值 示例及执行结果: 结论:通过执行结果可以看到,首先对sql进行了预编译处理,然后再传入参数,有效的避免了sql注入的问题,并且传参方式也比较简单…...

复制带随机指针的复杂链表
目录一、题目题目链接二、题目分析三、解题思路四、解题步骤4.1 复制结点并链接到对应原节点的后面4.2 处理复制的结点的随机指针random4.3 分离复制的链表结点和原链表结点并重新链接成为链表五、参考代码六、总结一、题目题目链接 题目链接:https://…...

【基于协同过滤算法的推荐系统项目实战-2】了解协同过滤推荐系统
本文目录1、推荐系统的关键元素1.1 数据1.2 算法1.3 业务领域1.4 展示信息2、推荐算法的主要分类2.1 基于关联规则的推荐算法基于Apriori的算法基于FP-Growth的算法2.2 基于内容的推荐算法2.3 基于协同过滤的推荐算法3、推荐系统常见的问题1、冷启动2、数据稀疏3、不断变化的用…...

线程安全(重点)
文章目录一.线程安全的概念1.1 线程安全的概念1.2 线程不安全的原因1.3 解决线程不安全二.synchronized-monitor lock(监视器锁)2.1 synchronized的特性(1)互斥(2)刷新内存(3)可重入2.2 synchronied使用方法1.直接修饰普通方法:2.修饰静态方法:3.修饰代码块:三.死锁3.1死锁的情…...

软件测试面试找工作你必须知道的面试技巧(帮助超过100人成功通过面试)
目录 问题一:“请你自我介绍一下” 问题二:“谈谈你的家庭情况” 问题三:“你有什么业余爱好?” 问题四:“你最崇拜谁?” 问题五:“你的座右铭是什么?” 问题六:“谈谈你的缺点” 问题七ÿ…...
Python快速入门:类、文件操作、正则表达式
类、文件操作、正则表达式1. 类2. 文件操作3. 正则表达式1. 类 类是用来描述具有相同的属性和方法的集合,定义了该集合中每个对象共有的属性和方法,对象是类的实例,可以调用类的方法。 定义类时,如有父类,则写在类名…...
java-day01
程序就是有序指令的集合 cmd执行java程序,javac Test.java,java Test java技术平台: javaSE标准版,javaEE企业版,javaME小型版 java语言面向对象的(oop),java跨平台性的(…...

玩转 Node.js 集群
一、介绍 Node 在 v0.8 时直接引入了 cluster 模块,用以解决多核 CPU 的利用率问题,同时也提供了较完善的 API,用以处理进程的健壮性问题。 cluster 模块调用 fork 方法来创建子进程,该方法与 child_process 中的 fork 是同一个…...

Day909.MySQL 不同的自增 id 达到上限以后的行为 -MySQL实战
MySQL 不同的自增 id 达到上限以后的行为 Hi,我是阿昌,今天学习记录的是关于MySQL 不同的自增 id 达到上限以后的行为的内容。 MySQL 里有很多自增的 id,每个自增 id 都是定义了初始值,然后不停地往上加步长。 虽然自然数是没有…...

JVM学习.01 内存模型
1、前言对于C、C程序员来说,在内存管理领域,他们拥有对象的“所有权”。从对象建立到内存分配,不仅需要照顾到对象的生,还得照顾到对象的消亡。背负着每个对象生命开始到结束的维护和管理责任。对于JAVA程序来说,因为J…...
R+VIC模型应用及未来气候变化模型预测
RVIC模型融合实践技术应用及未来气候变化模型预测在气候变化问题日益严重的今天,水文模型在防洪规划,未来预测等方面发挥着不可替代的重要作用。目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然&…...
搞懂vue 的 render 函数, 并使用
render函数是什么 简单的说,在vue中我们使用模板HTML语法组建页面的,使用render函数我们可以用js语言来构建DOM 因为vue是虚拟DOM,所以在拿到template模板时也要转译成VNode(虚拟节点)的函数,而用render函数构建DOM,vu…...

【Linux】GDB的安装与使用
安装安装gdb的具体步骤如下:1、查看当前gdb安装情况rpm -qa | grep gdb如果有,则可以先删除:rpm -e --nodeps 文件名如果没有,则进行下一步。2、下载gdb源码包或者直接apt安装。apt命令安装:sudo apt install gdb源码包…...

MySQL索引特性
文章目录为什么要有索引?认识磁盘磁盘的结构磁盘的盘片结构定位扇区磁盘随机访问 (Random Access)与连续访问 (Sequential Access)MySQL与磁盘交互索引的理解测试主键索引索引的原理索引结构是否可以使用其他数据结构B树 vs B树聚簇索引 vs 非聚簇索引为什么要有索引…...
Python 面向对象编程——类定义与对象
<类定义与对象声明> 面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥…...

基于 Apache Flink 的实时计算数据流业务引擎在京东零售的实践和落地
摘要:本文整理自京东零售-技术研发与数据中心张颖&闫莉刚在 ApacheCon Asia 2022 的分享。内容主要包括五个方面: 京东零售实时计算的现状实时计算框架场景优化:TopN场景优化:动线分析场景优化:FLINK 一站式机器学…...

【JavaEE】如何将JavaWeb项目部署到Linux云服务器?
写在前面 大家好,我是黄小黄。不久前,我们基于 servlet 和 jdbc 完善了博客系统。本文将以该系统为例,演示如何将博客系统部署到 Linux 云服务器。 博客系统传送门: 【JavaEE】前后端分离实现博客系统(页面构建&#…...

Mysql常用命令
mysql连接: [roothost]# mysql -u root -p Enter password:******创建数据库: CREATE DATABASE 数据库名; 删除数据库: drop database 数据库名; 使用mysqladmin删除数据库: [roothost]# mysqladmin -u root -p dr…...

【洛谷刷题】蓝桥杯专题突破-深度优先搜索-dfs(4)
目录 写在前面: 题目:P1149 [NOIP2008 提高组] 火柴棒等式 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目描述: 输入格式: 输出格式: 输入样例: 输出样例: 解题思路: …...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...