深入解析损失函数:从基础概念到YOLOv8的应用
深入解析损失函数:从基础概念到YOLOv8的应用
在机器学习和深度学习中,损失函数是至关重要的组件,它们衡量模型的预测值与真实值之间的差距,从而指导模型的优化过程。本文将详细探讨损失函数的基本概念,及其在YOLOv8中的具体应用。
一、损失函数的基本概念
损失函数(Loss Function)是计算模型预测值与真实值之间差距的函数。在训练模型时,目标是最小化损失函数的值,使模型的预测值尽可能接近真实值。损失函数的选择对模型的训练速度和效果有重要影响。常见的损失函数有均方误差(MSE)、交叉熵损失(Cross-Entropy Loss)等。
二、常见损失函数类型
-
均方误差(Mean Squared Error, MSE)
- 公式: MSE = 1 n ∑ i = 1 n ( y i ^ − y i ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^n (\hat{y_i} - y_i)^2 MSE=n1i=1∑n(yi^−yi)2
- 应用:主要用于回归问题,计算预测值与真实值之间的平方差。
-
交叉熵损失(Cross-Entropy Loss)
- 公式: Cross-Entropy = − ∑ i = 1 n [ y i log ( y i ^ ) + ( 1 − y i ) log ( 1 − y i ^ ) ] \text{Cross-Entropy} = -\sum_{i=1}^n [y_i \log(\hat{y_i}) + (1 - y_i) \log(1 - \hat{y_i})] Cross-Entropy=−i=1∑n[yilog(yi^)+(1−yi)log(1−yi^)]
- 应用:广泛用于分类问题,特别是多分类和二分类问题。
-
绝对误差(Mean Absolute Error, MAE)
- 公式: MAE = 1 n ∑ i = 1 n ∣ y i ^ − y i ∣ \text{MAE} = \frac{1}{n} \sum_{i=1}^n |\hat{y_i} - y_i| MAE=n1i=1∑n∣yi^−yi∣
- 应用:同样用于回归问题,计算预测值与真实值之间的绝对差。
三、损失函数在YOLOv8中的应用
YOLOv8(You Only Look Once, Version 8)是YOLO系列目标检测模型的最新改进版。其损失函数在YOLOv5的基础上进行了优化和改进,主要包括目标置信度损失(Objectness Loss)、分类损失(Classification Loss)和定位损失(Localization Loss)。
-
目标置信度损失(Objectness Loss)
- 主要用于判断每个anchor box是否包含目标物体。
- YOLOv8采用二元交叉熵损失函数来计算目标置信度:
Objectness Loss = − 1 N ∑ i = 1 N [ p i log ( p i ^ ) + ( 1 − p i ) log ( 1 − p i ^ ) ] \text{Objectness Loss} = -\frac{1}{N} \sum_{i=1}^N [p_i \log(\hat{p_i}) + (1 - p_i) \log(1 - \hat{p_i})] Objectness Loss=−N1i=1∑N[pilog(pi^)+(1−pi)log(1−pi^)] - 动态Anchor策略和Objectness Threshold策略等技术被引入以优化模型训练。
-
分类损失(Classification Loss)
- 用于判断每个anchor box中目标物体的类别。
- 采用二元交叉熵损失函数:
Classification Loss = − 1 N ∑ i = 1 N ∑ c = 1 C [ y i c log ( y i c ^ ) + ( 1 − y i c ) log ( 1 − y i c ^ ) ] \text{Classification Loss} = -\frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C [y_{ic} \log(\hat{y_{ic}}) + (1 - y_{ic}) \log(1 - \hat{y_{ic}})] Classification Loss=−N1i=1∑Nc=1∑C[yiclog(yic^)+(1−yic)log(1−yic^)]
-
定位损失(Localization Loss)
- 用于评估预测的边界框与真实边界框之间的差异。
- 通常采用IoU(Intersection over Union)损失或Smooth L1损失:
IoU Loss = 1 − Intersection Union \text{IoU Loss} = 1 - \frac{\text{Intersection}}{\text{Union}} IoU Loss=1−UnionIntersection - 还可使用改进的边界框回归损失函数如CIOU、DIOU、EIOU等,以提供更优的性能。
四、改进的边界框回归损失函数
改进的边界框回归损失函数如CIOU、DIOU、EIOU等,旨在解决传统IoU损失在梯度计算中的不足,从而提高目标检测模型的精度和收敛速度。
-
GIoU(Generalized IoU)
- 改进了IoU损失,通过考虑最小包围矩形的面积来提供更稳定的梯度:
GIoU = IoU − ∣ C − ( A ∪ B ) ∣ ∣ C ∣ \text{GIoU} = \text{IoU} - \frac{|C - (A \cup B)|}{|C|} GIoU=IoU−∣C∣∣C−(A∪B)∣
- 改进了IoU损失,通过考虑最小包围矩形的面积来提供更稳定的梯度:
-
DIoU(Distance IoU)
- 引入了中心点距离,进一步优化模型对不同尺度目标的检测:
DIoU = IoU − ρ 2 ( b , b gt ) c 2 \text{DIoU} = \text{IoU} - \frac{\rho^2(b, b^\text{gt})}{c^2} DIoU=IoU−c2ρ2(b,bgt)
- 引入了中心点距离,进一步优化模型对不同尺度目标的检测:
-
CIoU(Complete IoU)
- 结合了距离、重叠面积和宽高比,提供更全面的边界框回归:
CIoU = IoU − ( ρ 2 ( b , b gt ) c 2 + α v ) \text{CIoU} = \text{IoU} - \left( \frac{\rho^2(b, b^\text{gt})}{c^2} + \alpha v \right) CIoU=IoU−(c2ρ2(b,bgt)+αv)
- 结合了距离、重叠面积和宽高比,提供更全面的边界框回归:
-
EIoU(Efficient IoU)
- 通过进一步优化梯度的计算,提高了边界框回归的效率。
五、总结
损失函数在机器学习和深度学习中扮演着不可或缺的角色,它们直接影响模型的训练效果和性能表现。在YOLOv8中,通过组合目标置信度损失、分类损失和定位损失,结合改进的边界框回归损失函数,能够有效提高模型在目标检测任务中的准确性和鲁棒性。
对于任何深度学习项目,选择和设计合适的损失函数都是关键步骤之一。理解并灵活应用这些损失函数,可以为模型的优化和性能提升提供重要的支持。
希望通过本文的讲解,您能对损失函数有更深入的理解,并能够在实际项目中有效应用这些知识,提升模型的表现。
相关文章:
深入解析损失函数:从基础概念到YOLOv8的应用
深入解析损失函数:从基础概念到YOLOv8的应用 在机器学习和深度学习中,损失函数是至关重要的组件,它们衡量模型的预测值与真实值之间的差距,从而指导模型的优化过程。本文将详细探讨损失函数的基本概念,及其在YOLOv8中…...
2.11.ResNet
ResNet 动机:我们总是想加更多层,但加更多层并不总是能改进精度 可以看出F1到F6模型越来越大,但F6距离最优解却总变远了,反而效果不好,通俗的来说就是学偏了,实际上我们希望是这样的: 更大…...
GitLab添加TortoiseGIT生成SSH Key
文章目录 前言一、PuTTYgen二、GitLab 前言 GitLab是一个用于托管代码仓库和项目管理的Web平台,公司搭建自己的gitlab来管理代码,我们在clone代码的时候可以选择http协议,也可以选择ssh协议来拉取代码。 SSH (Secure Shell)是一种通过网络进…...
20240729 大模型评测
参考: MMBench:基于ChatGPT的全方位多模能力评测体系_哔哩哔哩_bilibili https://en.wikipedia.org/wiki/Levenshtein_distance cider: https://zhuanlan.zhihu.com/p/698643372 GitHub - open-compass/opencompass: OpenCompass is an LLM evalua…...
基于微信小程序的校园警务系统/校园安全管理系统/校园出入管理系统
摘要 伴随着社会以及科学技术的发展,小程序已经渗透在人们的身边,小程序慢慢的变成了人们的生活必不可少的一部分,紧接着网络飞速的发展,小程序这一名词已不陌生,越来越多的学校机构等都会定制一款属于自己个性化的小程…...
达梦数据库归档介绍
一、什么是归档 数据库归档是一种数据管理策略,它涉及将旧的、不经常访问的数据移动到一个单独的存储设备,以便在需要时可以检索,同时保持数据库的性能和效率。 归档的主要目标是为了释放数据库中的空间,以便更有效地利用高性能…...
OpenAI推出AI搜索引擎SearchGPT
OpenAI推出AI搜索引擎SearchGPT 据英国《卫报》和美国消费者新闻与商业频道等媒体报道,7月25日,OpenAI宣布正在测试一款名为SearchGPT的全新人工智能(AI)搜索工具。该工具能够实时访问互联网信息,旨在为用户提供更具时…...
elementplus菜单组件的那些事
在使用 elementplus 的菜单组件时,我发现有很多东西是官方没有提到但是需要注意的点 1. 菜单组件右侧会有一个边框 设置css .el-menu {border: 0 !important; } 2. 使用其他的 icon 文字内容一定要写在 这个 名字为 title 的插槽中 <el-menu-itemv-for"it…...
【VSCode实战】Golang无法跳转问题竟是如此简单
上一讲【VSCode实战】Go插件依赖无法安装 – 经云的清净小站 (skycreator.top),开头说到了在VSCode中Golang无法跳转的问题,但文章的最后也没给出解决方案,只解决了安装Go插件的依赖问题。 解决了插件依赖问题,无法跳转的问题也离…...
three.js中加载ply格式的文件,并使用tween.js插件按照json姿态文件运动
先贴一下文件地址: aa.ply 文件: https://download.csdn.net/download/yinge0508/89595650?spm1001.2014.3001.5501 new.json https://download.csdn.net/download/yinge0508/89595641?spm1001.2014.3001.5501 代码: <template><div>&…...
性能对比:Memcached 与 Redis 的关键差异
性能对比:Memcached 与 Redis 的关键差异 在选择合适的缓存系统时,Memcached 和 Redis 是最常被提及的两种技术。它们都是内存存储系统,用于提高数据访问速度和应用性能。尽管它们在功能上有很多相似之处,但在性能、特性和应用场…...
app-routing.module.ts 简单介绍
Angular的路由是一种功能,它允许应用程序响应不同的URL路径或参数并根据这些路径加载不同的组件。app-routing.module.ts是Angular项目中负责设置应用程序路由的文件。 以下是一个简单的app-routing.module.ts文件示例,它配置了三个路由: i…...
基于JSP的水果销售管理网站
你好,我是计算机学姐码农小野!如果有相关需求,可以私信联系我。 开发语言: Java 数据库: MySQL 技术: JSP技术 工具: 未在文档中明确指出,可能包括但不限于IDEs(如Ec…...
web3d值得学习并长期发展,性价比高吗?
在数字化浪潮日益汹涌的今天,Web3D技术以其独特的魅力和广泛的应用前景,逐渐成为技术领域的焦点。对于许多热衷于技术探索和创新的人来说,学习并长期发展Web3D技术无疑是一个值得考虑的选择。那么,Web3D技术的学习和发展究竟是否性…...
【大数据面试题】38 说说 Hive 怎么行转列
一步一个脚印,一天一道大数据面试题 博主希望能够得到大家的点赞收藏支持!非常感谢 点赞,收藏是情分,不点是本分。祝你身体健康,事事顺心! 行转列 假设我们有一张名为 sales_data 的表,其中包含…...
C语言中的二维数组
文章目录 🍊自我介绍🍊二维数组🍊代码实战 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞关注评论收藏(一键四连)哦~ 🍊自我介绍 Hello,大家好,我是小珑也要变强&…...
Android12 添加屏幕方向旋转方案
添加屏幕方向属性值 device/qcom/qssi/system.prop persist.panel.orientation0修改开机动画方向 frameworks/base/cmds/bootanimation/BootAnimation.cpp status_t BootAnimation::readyToRun() {mAssets.addDefaultAssets();mDisplayToken SurfaceComposerClient::getIn…...
Harmony-(1)-TypeScript-ArkTs
1.TypeScript 1.1变量 布尔值let isDone: boolean false;数字let decLiteral: number 2023; let binaryLiteral: number 0b11111100111; let octalLiteral: number 0o3747; let hexLiteral: number 0x7e7; console.log(decLiteral is decLiteral)字符串let name: string…...
TC8:SOMEIP_ETS_007-008
SOMEIP_ETS_007: echoBitfields 目的 检查位字段是否能够被顺利地发送和接收。 测试步骤 Tester:创建SOME/IP消息Tester:使用method echoBitfields发送SOME/IP消息DUT:返回method响应消息,其中位字段的顺序与请求相比是反向的期望结果 3、DUT:返回method响应消息,其中位…...
[网络编程】网络编程的基础使用
系列文章目录 1、 初识网络 网络编程套接字 系列文章目录前言一、TCP和UDP协议的引入二、UDP网络编程1.Java中的UDP2.UDP回显代码案例3.UDP网络编程的注意事项 三、TCP网络编程1.TCP回显代码案例2.TCP多线程使用 总结 前言 在学习完基础的网络知识后,完成跨主机通…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
