【AI落地应用实战】Amazon Bedrock +Amazon Step Functions实现链式提示(Prompt Chaining)
一、链式提示 Prompt Chaining架构
Prompt Chaining 是一种在生成式人工智能(如大型语言模型)中广泛使用的技术,它允许用户通过一系列精心设计的提示(Prompts)来引导模型生成更加精确、丰富且符合特定需求的内容。
Prompt Chaining 的核心思想在于不是一次性给出一个复杂的指令或问题给模型,而是将大问题分解成一系列更小、更具体的子问题,每个子问题通过生成的文本作为下一个提示的基础,逐步引导模型向目标输出逼近。这种链式提示的方式能够有效提高模型的响应质量,减少错误,并使得生成的内容更加符合用户的预期。
Prompt Chaining的工作原理基于两个关键要素:任务分解和对话连续性。
- 任务分解:首先,用户需要将复杂的任务或问题分解成一系列可管理的子任务或子问题。这些子任务应该按照逻辑顺序排列,以便逐步引导模型向最终目标靠近。
- 对话连续性:在分解任务后,用户会向模型发送第一个提示,并接收其生成的响应。然后,用户会根据这个响应设计下一个提示,这个提示可能会引用或反馈前一个响应的内容,以保持对话的连续性和一致性。这个过程会重复进行,直到达到满意的结果。

以上是一个示例的链式提示架构,首先其设计了一系列通过Amazon Step Functions定义的状态机。每个状态机代表了一个示例或任务的执行流程,它能够引导程序完成特定的任务或操作。这些状态机会调用Amazon Bedrock中的基础模型来生成对应内容,最后Streamlit应用程序将展示这些状态机执行的结果,并展示给用户。
二、实践:Amazon Bedrock +Amazon Step Functions实现链式提示
2.1、依赖安装与代码准备
首先进入亚马逊云科技海外区官网,点击亚马逊控制台,搜索Cloud 9,打开Cloud9 控制台界面:

进入控制台后,点击打开Cloud9 IDE:

进入Cloud9 IDE之后,首先在终端中输入sudo npm install -g npm更新NPM,然后,使用npm安装cdk:

然后,使用git克隆,下载本次实践的代码:
git clone https://github.com/aws-samples/build-genai-agent-workflows-with-step-functions
出现build-genai开头的文件夹时,表明代码拉取成功:

最后,cd进入build-genai-agent-workflows-with-step-functions文件夹,并安装对应依赖:
cd build-genai-agent-workflows-with-step-functions/
pip install -r requirements.txt

2.2、通过 CDK 部署项目
CDK(AMazon Cloud Development Kit)是一个开源的软件开发框架,其提供了一种声明式的方法来构建、编写和部署基础设施,使得基础设施的创建和管理更加可靠、可重复和易于维护。
准备好代码和依赖后,下面在终端输入:cdk deploy --all开始部署,部署大致需要 5 分钟:

部署成功后,会给出预览的网址,单击链接,打开项目地址:

项目的效果如下,其将故事撰写任务分为多个子任务,首先为故事生成角色列表,然后为故事生成每个角色的情节,之后使用角色描述和情节生成短篇故事。

2.3、打开 Step Functions监控工作流运行细节
以上项目已经为我们成功创建了 Step Functions工作流,我们可以打开控制台,搜索并点击进入Step Functions:

在Step Functions控制台中找到PromptChainDemo-StoryWriter状态机:

打开任务,并查看streamlit开头的任务:

在图表视图里,就可以看到工作流的具体流程以及正在发生的事件:

故事撰写的完整工作流图示如下:

整个工作流设计了一个使用人工智能辅助创作故事的过程,其中包括角色和故事情节的生成、迭代、错误处理、故事合并和最终选择,其中它从“Start”开始,然后进入一系列步骤,每个步骤都以“Generate Characters”或“Generate Character Story Arc”开始,表明这些步骤是关于角色生成或故事情节构建的。整个工作流的连贯分析如下:
- 角色生成:首先,工作流涉及角色的创建,包括准备消息、格式化提示、调用模型、提取模型响应和准备输出。创作者需要准备输入给模型的信息,然后使用模型生成角色,最后提取并准备这些角色的输出。
- 角色故事映射:在角色生成后,有一个“Character Story Map”步骤,这意味着将角色与他们的故事线进行关联或映射。
- 故事情节生成:与角色生成类似,故事情节的生成也包括准备消息、格式化提示、调用模型、提取模型响应和准备输出。
- 合并角色故事:在角色和故事情节生成之后,有一个“Merge Character Stories”步骤,将不同角色的故事线合并成一个连贯的故事。
- 故事完整性:接下来是“Generate the Full Story”,这包括准备消息、包括之前的消息、格式化提示、调用模型、提取模型响应和准备输出,主要用于整合之前生成的所有元素,以形成一个完整的故事。
- 选择故事:最后,有一个“Select Story”步骤,这可能意味着从生成的多个故事中选择一个最终版本。
至此,我们就成功部署了一个基于 Amazon Bedrock,Amazon Cloud9,Amazon Step Functions,Amazon Lambda 和 Amazon Fargate 等 Serverless服务搭建的工作流。这个工作流使用Prompt Chaining将一个宏大的创作任务——Story Writer——分解成一系列角色创建、情节设计等步骤。每个步骤都通过调用LLM并传递特定的Prompt来执行。把一个复杂的任务分解成多个步骤,多次调用大语言模型,稳定可靠的完成任务。
现在进入亚马逊云科技海外区官网,除了免费的Amazon Step Functions、Amazon Lambda,还有丰富的亚马逊云服务器(Amazon EC2)、亚马逊云科技云存储(Amazon S3),负载均衡(Elastic Load Balancing),虚拟服务器VPS(Amazon Lightsail)、视频会议(Amazon Chime )等等100 余种云产品或服务免费试用。
相关文章:
【AI落地应用实战】Amazon Bedrock +Amazon Step Functions实现链式提示(Prompt Chaining)
一、链式提示 Prompt Chaining架构 Prompt Chaining 是一种在生成式人工智能(如大型语言模型)中广泛使用的技术,它允许用户通过一系列精心设计的提示(Prompts)来引导模型生成更加精确、丰富且符合特定需求的内容。 P…...
vue Ref 和 Reactive 原理解析
文章目录 RefReactive Ref ref 的语义是指向一个值的引用,主要用于处理基本数据类型和单一值对象,即对值的引用进行包装和管理,而不是对对象的操作进行拦截,对于基础类型通过 getter 和 setter 实现拦截使用 Proxy 拦截对象的所有…...
【人工智能】Transformers之Pipeline(六):图像分类(image-classification)
目录 一、引言 二、图像分类(image-classification) 2.1 概述 2.2 技术原理 2.3 应用场景 2.4 pipeline参数 2.4.1 pipeline对象实例化参数 2.4.2 pipeline对象使用参数 2.4 pipeline实战 2.5 模型排名 三、总结 一、引言 pipeline&#x…...
编程语言漫谈之「初始化与赋值」——以C++和汇编语言为示例
编程语言漫谈之「初始化与赋值」——以C和汇编语言为示例 1. 赋值时汇编做了什么2. 在变量定义时做初始化, 与在使用时才进行初始化, 有区别吗? 1. 赋值时汇编做了什么 当我们在C中写下如下代码: int main() {int a 10;return 0; }这是一个简单的整数类型变量a的初始化赋值…...
windows使用ssh-agent管理私钥
主要有以下几个方面: 开启openssh 的 ssh-agent 服务 打开powershell 输入 Get-Service -Name ssh-agent 查看服务是否起来Start-Service ssh-agent 启动服务Stop-Service ssh-agent 关闭服务将私钥添加到ssh-agent 添加私钥 ssh-add ~/.ssh/id_rsa查询添加哪些私钥 ssh-add -…...
PostgreSQL 之 to_timestamp函数
to_timestamp 是 PostgreSQL 中的一个函数,用于将字符串或数字转换为时间戳。以下是关于 to_timestamp 的详细介绍: 引入版本 to_timestamp 函数在 PostgreSQL 7.3 版本中引入。 语法 to_timestamp 有两种主要的用法: 1.将字符串转换为时间戳 to_timestamp(text, text)第…...
USB3.0的等长要求到底是多少?
USB2.0与USB3.0接口的PCB布局布线要求PCB资源PCB联盟网 - Powered by Discuz! (pcbbar.com) 90欧姆阻抗,走差分线: 重点来了:...
力扣高频SQL 50题(基础版)第二十五题
文章目录 力扣高频SQL 50题(基础版)第二十五题619.只出现一次的最大数字题目说明实现过程准备数据实现方式结果截图 力扣高频SQL 50题(基础版)第二十五题 619.只出现一次的最大数字 题目说明 MyNumbers 表: ------…...
【C++题解】1581. 马里奥的银币1
问题:1581. 马里奥的银币1 类型:数组找数 题目描述: 马里奥有很多银币,有一天他得到了一张魔法卡,只要使用这张魔法卡,就可以使得他的银币里面的最大的银币金额变得更大。如果他最大的银币是偶数的金额&a…...
system和popen函数的异同点
system和popen函数的异同点 文章目录 system和popen函数的异同点1.什么是shell命令2.system 函数3.popen 函数4.总结 1.什么是shell命令 Shell 命令是在类 UNIX 操作系统(包括 UNIX、Linux 和 macOS 等)的 Shell 中执行的指令。Shell 是操作系统的命令行…...
Python小工具之httpstat网络分析
一、简介 Python httpstat是一个基于Python的命令行工具,用于测量HTTP请求的性能和状态信息。它能够向目标服务器发送HTTP请求,并显示详细的统计信息,包括DNS解析时间、建立连接时间、TLS/SSL握手时间、首字节时间、总时间等。这些信息对于排…...
挑战房市预测领头羊:KNN vs. 决策树 vs. 线性回归
挑战房市预测领头羊(KNN,决策树,线性回归) 1. 介绍1.1 K最近邻(KNN):与邻居的友谊1.1.1 KNN的基础1.1.2 KNN的运作机制1.1.3 KNN的优缺点 1.2 决策树:解码房价的逻辑树1.2.1 决策树的…...
Docker 基础知识
Docker 基础知识 什么是 Docker? Docker 是一个开源平台,用于开发、发布和运行应用程序。Docker 通过将应用程序及其依赖项打包到一个称为容器的可移植单元中来工作。 Docker 的核心组件是什么? Docker Engine:核心组件࿰…...
视频主题Qinmei 3.0视频站源码_WordPress影视视频主题/附详细安装教程
Qinmei 3.0主题主要是将 wordpress 改造成纯 api 的站点,以便实现前后端分离的技术栈,目前的进度已经大致完成,唯一的问题就是需要安装 JWT token 插件。 功能介绍: 支持豆瓣以及 bangumi 的一键获取信息, 豆瓣 api 目前使用的是…...
数字看板:跨行业需求下的创新与升级
在当今这个数据驱动的时代,数字看板作为信息展示与决策支持的重要工具,正逐步渗透到各行各业之中。从智慧城市到智能制造,从金融分析到医疗健康,数字看板以其直观、动态、高效的特点,成为了连接数据与决策者的桥梁。本…...
02、爬虫数据解析-Re解析
数据解析的目的是不拿到页面的全部内容,只拿到部分我们想要的内容内容。 Re解析就是正则解析,效率高准确性高。学习本节内容前需要学会基础的正则表达式。 一、正则匹配规则 1、常用元字符 . 匹配除换行符以外的字符 \w 匹配字母或数字或下划…...
掀桌子了!原来是咱们的大屏设计太酷,吓着前端开发老铁了
掀桌子了!原来是咱们的大屏设计太酷,吓着前端开发老铁了 艾斯视觉观点认为:在软件开发的世界里,有时候创意和设计的火花会擦得特别亮,以至于让技术实现的伙伴们感到既兴奋又紧张。这不,我们的设计团队刚刚…...
JavaScriptfor循环的树形菜单栏·
在此声明一下嗷兄弟闷儿!我没写样式纯粹是console.log()打印控制面板的! 全局声明一个data; let data; 然后去获取到json的假数据 let xhr new XMLHttpRequest(); // 设置请求方式和请求地址 xhr.open(get, ./js/menu.json, true); // 发…...
easyExcel 3.x以上版本导入数据后,再把错误信息导出,外加自定义RGB背景色、行高、宽度等
easyExcel 3.x以上版本导入数据后,再把错误信息导出,外加自定义RGB背景色 背景 由于项目中用的easypoi导入的数据量大了,会导致OOM的问题,所以要求更换为easyExcel框架做导入。话不多说,这里只做一个导入的示例&…...
React的img图片路径怎么写
在React中,图片路径的写法取决于你的图片资源是如何被管理和存放的。这里有几种常见的情况和对应的写法: 1. 图片作为React组件的静态资源 如果你的图片文件放在React项目的public文件夹下(这是Create React App项目的默认结构)…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...
