深度学习:如何计算感受野
感受野(Receptive Field)是卷积神经网络(CNN)中的一个重要概念,用于描述输入图像中的一个像素在输出特征图中影响的区域大小。在设计和理解卷积神经网络时,计算感受野有助于理解网络如何对输入数据进行处理。
计算感受野的方法
单层卷积的感受野
对于一个卷积层,如果我们知道卷积核的大小 ( k ),步幅 ( s ),和填充 ( p ),单层卷积的感受野计算比较简单。对于第 ( i ) 层卷积,感受野可以表示为:
R i = k i + ( R i − 1 − 1 ) × s i Ri = ki + (R{i-1} - 1) \times si Ri=ki+(Ri−1−1)×si
其中:
- ( R i ) ( R_i ) (Ri) 是第 ( i ) 层的感受野大小
- ( k i ) ( k_i ) (ki) 是第 ( i ) 层卷积核的大小
- ( s i ) ( s_i ) (si) 是第 ( i ) 层的步幅
- ( R i − 1 ) ( R_{i-1} ) (Ri−1) 是前一层的感受野大小
多层卷积的感受野
为了计算整个网络的感受野,我们需要从最顶层(靠近输入)开始,逐层往上计算每一层的感受野。考虑网络中的每一层的卷积核大小、步幅和填充。
示例
假设一个简单的卷积神经网络如下:
输入图像大小为 (32 \times 32)
- 第一层:卷积层,卷积核大小 ( 3 × 3 ) (3 \times 3) (3×3),步幅 1,填充 1
- 第二层:池化层,池化窗口大小 ( 2 × 2 ) (2 \times 2) (2×2),步幅 2,填充 0
- 第三层:卷积层,卷积核大小 ( 3 × 3 ) (3 \times 3) (3×3),步幅 1,填充 1
我们计算每一层的感受野:
- 第0层(输入层),感受野大小 ( 1 × 1 ) (1 \times 1) (1×1)
- 第1层(第一层卷积层):
[ R 1 = 3 + ( 1 − 1 ) × 1 = 3 ] [ R_1 = 3 + (1 - 1) \times 1 = 3 ] [R1=3+(1−1)×1=3]
感受野大小为 ( 3 × 3 ) (3 \times 3) (3×3) - 第2层(池化层):
[ R 2 = 2 + ( 3 − 1 ) × 2 = 6 ] [ R_2 = 2 + (3 - 1) \times 2 = 6 ] [R2=2+(3−1)×2=6]
感受野大小为 ( 6 × 6 ) (6 \times 6) (6×6) - 第3层(第二层卷积层):
[ R 3 = 3 + ( 6 − 1 ) × 1 = 8 ] [ R_3 = 3 + (6 - 1) \times 1 = 8 ] [R3=3+(6−1)×1=8]
感受野大小为 ( 8 × 8 ) (8 \times 8) (8×8)
因此,在这个简单的卷积神经网络中,最后一层输出的每一个像素对应输入图像中的一个 ( 8 × 8 ) (8 \times 8) (8×8) 区域。
实际计算例子
让我们通过一个更详细的实际例子来计算一个复杂卷积神经网络的感受野。假设以下是一个卷积神经网络结构:
输入图像大小: ( 224 × 224 ) (224 \times 224) (224×224)
- 卷积层1:卷积核 ( 7 × 7 ) (7 \times 7) (7×7),步幅 2,填充 3
- 最大池化层:池化窗口 ( 3 × 3 ) (3 \times 3) (3×3),步幅 2,填充 1
- 卷积层2:卷积核 ( 3 × 3 ) (3 \times 3) (3×3),步幅 1,填充 1
我们从输入层开始逐层计算:
- 输入层感受野:1
- 卷积层1:
[ R 1 = 7 + ( 1 − 1 ) × 2 = 7 ] [ R_1 = 7 + (1 - 1) \times 2 = 7 ] [R1=7+(1−1)×2=7]
感受野大小: ( 7 × 7 ) (7 \times 7) (7×7) - 最大池化层:
[ R 2 = 3 + ( 7 − 1 ) × 2 = 15 ] [ R_2 = 3 + (7 - 1) \times 2 = 15 ] [R2=3+(7−1)×2=15]
感受野大小: ( 15 × 15 ) (15 \times 15) (15×15) - 卷积层2:
[ R 3 = 3 + ( 15 − 1 ) × 1 = 17 ] [ R_3 = 3 + (15 - 1) \times 1 = 17 ] [R3=3+(15−1)×1=17]
感受野大小: ( 17 × 17 ) (17 \times 17) (17×17)
这个计算过程可以通过一个Python脚本来自动化:
def calculate_receptive_field(layers):receptive_field = 1for layer in reversed(layers):kernel_size, stride, padding = layerreceptive_field = kernel_size + (receptive_field - 1) * stridereturn receptive_field# 定义网络的每一层:(卷积核大小,步幅,填充)
layers = [(3, 1, 1), # Conv Layer 2(3, 2, 1), # Max Pooling Layer(7, 2, 3) # Conv Layer 1
]rf = calculate_receptive_field(layers)
print(f'The receptive field is {rf} x {rf}')
通过这个脚本,可以方便地计算任意复杂网络的感受野。
相关文章:
深度学习:如何计算感受野
感受野(Receptive Field)是卷积神经网络(CNN)中的一个重要概念,用于描述输入图像中的一个像素在输出特征图中影响的区域大小。在设计和理解卷积神经网络时,计算感受野有助于理解网络如何对输入数据进行处理…...
【状语从句】
框架 概念,特点主将从现连接词时间条件地点结果方式让步原因目的比较省略倒装 解读 1【概念,特点】 一个完整的句子,去修饰另一个完整句子中的动词,称为状语从句;特点:从句完整,只用考虑连接词是…...
阿里云服务器安装Anaconda后无法检测到
前言 问题如标题所言,就是conda -V验证错误,不过后来发现其实就是虽然安装时,同意了写入环境变量,但是其实还没有写入,需要手动写入。下面也会重复一遍安装流程。 安装 到[Anaconda下载处](Download Now | Anaconda)查…...
在没有源程序的情况时,如何通过控制鼠标按钮控制电脑exe程序?
有时候想控制第三方软件,但是没有源程序,可以控制鼠标键盘自动操作软件达到我们想要的目的 首先建一个功能类包含窗口控制,鼠标控制和输入控制等 csharp using System; using System.Collections.Generic; using System.Linq; using System.…...
如何排查GD32 MCU复位是由哪个复位源导致的?
上期为大家讲解了GD32 MCU复位包括电源复位和系统复位,其中系统复位还包括独立看门狗复位、内核软复位、窗口看门狗复位等,在一个GD32系统中,如果莫名其妙产生了MCU复位,如何排查具体是由哪个复位源导致的呢? GD32 MC…...
【C算法】编程初学者入门训练140道(1~20)
牛客编程初学者入门训练150题 BC1 实践出真知BC2 我是大VBC3 有容乃大BC6 小飞机BC7 缩短二进制BC8 十六进制转十进制BC9 printf的返回值BC10 成绩输入输出BC11 学生基本信息输入输出BC12 字符圣诞数BC13 ASCII 码BC14 出生日期输入输出BC15 按照格式输入并交换输出BC16 字符转…...
消息队列-rabbitmq(生产者.消费者. 消息.可靠性)
生产者者的可靠性 为了保证我们生产者在发送消息的时候消息不丢失,我们需要保证发送者的可靠性 1.生产者重试 假如发送消息的时候消息丢失 ,我们可以使用发送者 重试机制,尝试重新发送消息 实现该机制非常简单,只需要在yml文…...
《InheriBT行为树》For Unity
InheriBT: Unity Editor中的行为树编辑框架 行为树(Behavior Tree)是一种广泛应用于人工智能(AI)领域的决策模型,特别是在游戏开发中。行为树通过分层结构和节点的组合,实现了复杂行为的简洁表达。然而&am…...
黑马头条Day11- 实时计算热点文章、KafkaStream
一、今日内容 1. 定时计算与实时计算 2. 今日内容 KafkaStream 什么是流式计算KafkaStream概述KafkaStream入门案例SpringBoot集成KafkaStream 实时计算 用户行为发送消息KafkaStream聚合处理消息更新文章行为数量替换热点文章数据 二、实时流式计算 1. 概念 一般流式计…...
pnpm 设置国内源
pnpm config set registry https://registry.npmmirror.com/...
链表分割 C语言
链表分割_牛客题霸_牛客网 (nowcoder.com) ( 点击前面链接即可查看题目) /* struct ListNode {int val;struct ListNode *next;ListNode(int x) : val(x), next(NULL) {} };*/ #include <cstddef> class Partition { public:ListNode* partition(ListNode* pHea…...
python编程,设计一个详细的软件 与SADS 相似
软件功能模块: 用户界面模块(UI Module) 项目管理界面模型构建界面分析和设计界面结果展示和报告生成界面 数据库模块(Database Module) 材料数据库结构组件数据库设计标准和规范数据库用户项目数据存储 模型构建模块&…...
META 备受期待的 Llama 3 405B 即将发布
本心、输入输出、结果 文章目录 META 备受期待的 Llama 3 405B 即将发布前言Llama 3 405B或许会彻底改变专用模型的数据质量Llama 3 405B将形成新的模型生态系统:从基础模型到专家组合Llama 3 405B有最高效 API 的竞争Llama 3 405B 基准测试META 备受期待的 Llama 3 405B 即将…...
c# Math.Round()四舍五入取整数
可以使用Math.Round()方法进行四舍五入取整数的操作。 以下是使用Math.Round()方法的实现方法: 将浮点数直接作为参数传递给Math.Round()方法,并指定要保留的小数位数。此方法将返回最接近的整数值。 double number 3.89; int roundedNumber (int)Mat…...
【C++BFS算法】886. 可能的二分法
本文涉及的点 CBFS算法 LeetCod886. 可能的二分法 给定一组 n 人(编号为 1, 2, …, n), 我们想把每个人分进任意大小的两组。每个人都可能不喜欢其他人,那么他们不应该属于同一组。 给定整数 n 和数组 dislikes ,其…...
【MySQL】记录MySQL加载数据(LOAD DATA)
MySQL LOAD DATA 一、背景二、模拟生成用户信息三、加载到mysql表3.1、建表语句3.2 加载数据3.3、查看结果 一、背景 现在有个需求是将用户信息存入student.data文件中,在现在load到数据库中 二、模拟生成用户信息 假设用户信息,包含姓名,…...
6 网络
6 网络 1、概念2 IP地址3、套接字4、TCP协议4.1 TCP协议的基本特征4.2 建立连接4.4 终止连接4.5 编程模型 5、UDP协议5.1 UDP协议的基本特性5.2 常用函数5.3 UDP通信模型 6、域名解析 1、概念 计算机网络是实现资源共享和信息传递的计算机系统 ISO/OSI网络协议模型 TCP/IP协…...
SQL中CASE WHEN的用法
CASE WHEN的用法 1. CASE WHEN数据转换 说明:使用CASE WHEN我们可以将范围的数据转换成特定的值来表达; 假如:有一个员工表Employee(employee_id,department_id.salary,name,age); 需求:需要根据薪资情况来评定等级:…...
CTF-Web习题:[GXYCTF2019]Ping Ping Ping
题目链接:[GXYCTF2019]Ping Ping Ping 解题思路 访问靶机,得到如下页面,类似于URL参数 尝试用HackBar构造url传输过去看看 发现返回了ping命令的执行结果,可以猜测php脚本命令是ping -c 4 $ip,暂时不知道执行的函数…...
python+vue3+onlyoffice在线文档系统实战20240725笔记,首页开发
解决遗留问题 内容区域的高度没有生效,会随着菜单的高度自动变化。 解决方案:给侧边加上一个最小高度。 首页设计 另一种设计: 进来以后,是所有的文件夹和最近的文件。 有一张表格,类似于Windows目录详情&…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
