探索LLM世界:新手小白的学习路线图
随着人工智能的发展,语言模型(Language Models, LLM)在自然语言处理(NLP)领域的应用越来越广泛。对于新手小白来说,学习LLM不仅能提升技术水平,还能为职业发展带来巨大的机遇。那么,作为一名新手小白,如何系统地学习LLM呢?本文将为你提供一条具体的学习路线图,帮助你从零基础到掌握LLM的核心技术。
一、了解基础概念
-
什么是LLM?
LLM(Large Language Model)是指通过大量数据训练出来的语言模型,能够理解和生成自然语言。例如,GPT-3 是一种典型的 LLM。
-
自然语言处理(NLP)基础
NLP 是人工智能的一个分支,涉及计算机对自然语言的理解和生成。学习NLP的基础概念是掌握LLM的前提。
二、打好编程基础
-
选择编程语言
学习LLM,Python 是首选语言。它有丰富的NLP库和工具,便于快速上手。
-
学习Python基础
- 数据类型、控制结构、函数和模块。
- 通过在线课程或书籍(如《Python编程:从入门到实践》)进行系统学习。
-
掌握数据处理和分析
- 熟悉NumPy、Pandas等数据处理库。
- 学习数据清洗、数据可视化等基本技能。
三、NLP基础知识
-
学习NLP入门课程
- 选择优质的在线课程(如Coursera上的“Natural Language Processing”)或书籍(如《Speech and Language Processing》)。
-
掌握基本技术
- 词汇表示:词袋模型(Bag of Words)、TF-IDF。
- 词向量:Word2Vec、GloVe。
- 语言模型:n-gram模型、朴素贝叶斯分类器。
-
实践练习
- 在Kaggle上参与NLP相关的竞赛,积累实践经验。
四、深度学习基础
-
学习深度学习基础课程
- 选择优质的在线课程(如Coursera上的“Deep Learning Specialization”)或书籍(如《Deep Learning》)。
-
掌握核心概念
- 神经网络基础:感知器、激活函数、损失函数。
- 训练方法:反向传播、梯度下降。
- 深度学习框架:TensorFlow、PyTorch。
-
实践练习
- 在TensorFlow和PyTorch上实现简单的神经网络,理解基本的训练过程。
五、深入学习LLM
-
了解LLM的架构
- Transformer架构:自注意力机制、编码器-解码器结构。
- BERT模型:双向编码表示。
- GPT模型:生成式预训练。
-
学习相关课程和阅读论文
- 选择优质的在线课程(如DeepLearning.AI的“Natural Language Processing with Transformers”、B站上的相关课程)或阅读相关论文(如《Attention is All You Need》)。
-
实践项目
- 在Hugging Face等平台上使用预训练模型,进行文本生成、文本分类等任务。
- 通过实战项目(如构建聊天机器人)加深对LLM的理解。
六、参与社区和竞赛
-
加入NLP和LLM相关的社区
- 参与在线论坛(如知乎、CSDN、Stack Overflow、Reddit)的讨论,获取最新资讯和技术分享。
-
参与Kaggle竞赛
- 通过参与Kaggle、天池上的NLP竞赛,提升实践能力和问题解决能力。
-
贡献开源项目
- 在GitHub上参与和贡献开源NLP项目,积累实际开发经验。
七、进阶学习和研究
-
阅读前沿论文
- 关注顶级会议(如ACL、EMNLP、NeurIPS)的最新研究,阅读和理解前沿论文。
-
深入研究LLM
- 探索LLM的优化和改进方法,如模型压缩、知识蒸馏等。
-
实践应用
- 将LLM应用于实际项目中,如智能客服、内容生成等,提升模型的实用性和效果。
八、总结与展望
通过系统的学习和实践,新手小白也能逐步掌握LLM的核心技术。掌握LLM不仅能提升个人技术水平,还能为职业发展带来广阔的前景。未来,随着技术的不断进步,LLM将在更多领域发挥重要作用,成为推动科技进步的重要力量。
结语
学习LLM是一条充满挑战但也充满机遇的道路。只要你坚持不懈、不断学习和实践,就一定能够在LLM领域取得突破。希望本文提供的学习路线图能为你指明方向,助你早日掌握LLM,开启AI学习的新篇章!
学习资源推荐
在线课程
- Coursera:
(Top Natural Language Processing Courses - Learn Natural Language Processing Online) Natural Language Processing - DeepLearning.AI: Natural Language Processing with Transformers
书籍
- 《Python编程:从入门到实践》
- 《Speech and Language Processing》
- 《Deep Learning》
实践平台
- 天池: 天池竞赛
- Kaggle: Kaggle竞赛
- Hugging Face: Hugging Face
社区
- Stack Overflow: Stack Overflow
- Reddit: Reddit NLP社区
一站式资源
- Datawhale最新夏令营活动:AI4S专题来袭!Datawhale AI夏令营第三期,阿里云天池联合主办!-CSDN博客
希望以上资源能为你的学习之路提供有力支持。祝你学习顺利,早日成为LLM领域的专家!
相关文章:

探索LLM世界:新手小白的学习路线图
随着人工智能的发展,语言模型(Language Models, LLM)在自然语言处理(NLP)领域的应用越来越广泛。对于新手小白来说,学习LLM不仅能提升技术水平,还能为职业发展带来巨大的机遇。那么,…...
Linux基础命令大全 持续更新中......
最近重新学习了linux基础知识,并整理出了以下内容,以供参考 最近几日后续会持续更新内容哦 用户管理 加括号的代表可以不写 useradd (参数选项) 用户名 添加新用户 passwd (参数选项) 用户名 用…...
CPU的起源与发展历程
CPU的起源与发展历程 文章目录 CPU的起源与发展历程前言指令概念电子管(真空管)体系结构冯诺依曼架构哈佛架构 晶体管集成电路指令集与微架构微处理器x86架构CISC与RISC的提出MIPS架构ARM架构RISC-V架构FPGA 总结 前言 从古至今,人类为了…...

【C语言】 二叉树创建(结构体,先序遍历,中序遍历,后续遍历)
二叉树的创建:首先先定义一个结构体,里面包含数据(data),指向左子树的指针(L),指向右子树的指针(R)三个部分 在创建树的函数中,首先先输入…...

【和相同的二元子数组】python刷题记录
R2-前缀和专题 目录 前缀和哈希表 双指针 ps: 第一眼过去,这题应该能用双指针解出来,应该也能用前缀和解题。 前缀和哈希表 适用于 nums[i] 值不固定为 0 和 1 的其他情况 class Solution:def numSubarraysWithSum(self, nums: List[int], goal: i…...

【单片机毕业设计选题24087】-基于北斗系统的智能路灯
系统功能: 系统操作说明: 上电后OLED显示 “欢迎使用智能路灯系统请稍后”,两秒后显示Connecting...表示 正在连接阿里云,正常连接阿里云后显示第一页面,如长时间显示Connecting...请 检查WiFi网络是否正确。 系统分为四种模…...
[Docker][Docker常用命令]详细讲解
目录 1.帮助命令2.镜像命令3.容器命令4.卷命令5.常用命令 1.帮助命令 docker version # 显示docker的版本信息 docker info # 显示docker的系统信息,包括镜像和容器的数量 docker 命令 --help # 某条命令的帮助命令2.镜像命令 查看所有本地的主机上的镜像…...

onlyoffice用nginx反向代理
我对于onlyoffice的需求就是当个在线编辑器使用。在集成react的时候之前都是写的绝对路径的地址,这样在需要迁移应用的时候就造成了巨大的麻烦,所以我决定用nginx做反向代理,这样我集成的时候就不用每次都修改源码中的地址了。 一开始写的代…...
JavaScript字符串转换成base64编码方法
// base64编码表 const base64EncodeChars ref<string>("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789/" );/*** base64编码* param {Object} str*/ const base64encode (str: string) > {let result "";// 循环遍历字符串…...

25.惰性队列
介绍 消费者由于各种原因而致使长时间不能消费消息造成堆积。比如有一百万条消息发送到mq中,消费者这时宕机了不能消费消息,造成了消息堆积。惰性队列就有必要了。 正常情况下,消息保存在内存中。消费者从内存中读取消息消费,速…...

ControlNet on Stable Diffusion
ControlNet on Stable Diffusion 笔记来源: 1.Adding Conditional Control to Text-to-Image Diffusion Models 2.How to Use OpenPose & ControlNet in Stable Diffusion 3.ControlNet与DreamBooth:生成模型的精细控制与主体保持 4.Introduction t…...

源码编译安装,及nginx服务控制、监控块
1.源码编译安装: [root17dns ~]# wget https://nginx.org/download/nginx-1.27.0.tar.gz 2.解压: [root17dns ~]# tar -zxvf nginx-1.27.0.tar.gz 3.安装gcc等工具 [root17dns ~]# yum -y install gcc gcc-c [root17dns ~]# yum -y install make lrzsz …...
在react中使用wangeditor富文本
官方文档 wangeditor5在线文档 依赖安装(react框架) yarn add wangeditor/editor # 或者 npm install wangeditor/editor --saveyarn add wangeditor/editor-for-react # 或者 npm install wangeditor/editor-for-react --save在React 中使用wangEditor …...

拉提查合创5步玩转git工具协作代码开发
1 工具使用场景 开发团队使用git版本管理工具,进行协作代码开发过程中,最常用的场景为: (1)拉取代码 将git远端仓库最新代码拉取到本地。 (2)提交代码 将本地新增修改的代码提交至git远端仓库中…...
React特点
React 是一个用于构建用户界面的 JavaScript 库,由 Facebook 开发并维护。React 的特点主要体现在以下几个方面: 声明式(Declarative):React 使你能够以一种声明的方式来描述你的 UI,这使得代码更加容易理解…...

鸿蒙(HarmonyOS)自定义Dialog实现时间选择控件
一、操作环境 操作系统: Windows 11 专业版、IDE:DevEco Studio 3.1.1 Release、SDK:HarmonyOS 3.1.0(API 9) 二、效果图 三、代码 SelectedDateDialog.ets文件/*** 时间选择*/ CustomDialog export struct SelectedDateDialog {State selectedDate:…...

学习008-02-04-08 Localize UI Elements(本地化UI元素)
Localize UI Elements(本地化UI元素) This lesson explains how to localize an XAF application. It describes how to translate UI elements into German and create a multi-language application. 本课介绍如何本地化XAF应用程序。它描述了如何将U…...

如何系统的学习C++和自动驾驶算法
给大家分享一下我的学习C和自动驾驶算法视频,收藏订阅都很高。打开下面的链接,就可以看到所有的合集了,订阅一下,下次就能找到了。 【C面试100问】第七十四问:STL中既然有了vector为什么还需要array STL中既然有了vec…...
typescript 定义类
/* js class 和 ts class 的区别 ---------------------------- | 语言 | js | ts | ---------------------------| | 公有 | 有 | jspublic | ---------------------------| | 私有 | 无 | private | ---------------------------| | 静态 | …...

认证授权概述和SpringSecurity安全框架快速入门
1. 认证授权的概述 1.1 什么是认证 进入移动互联网时代,大家每天都在刷手机,常用的软件有微信、支付宝、头条、抖音等 以微信为例说明认证的相关基本概念。在初次使用微信前需要注册成为微信用户,然后输入账号和密码即可登录微信,…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

【51单片机】4. 模块化编程与LCD1602Debug
1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...