【每日一题】【逆推法 + 贪心】【数学】造数 河南萌新联赛2024第(一)场:河南农业大学 A题 C++
河南萌新联赛2024第(一)场:河南农业大学 A题
造数
题目描述

样例 #1
样例输入 #1
2
样例输出 #1
1
样例 #2
样例输入 #2
5
样例输出 #2
3
做题思路
本题可以用逆推法
将三种操作反过来变为
− 1 , − 2 , / 2 -1 , -2 , /2 −1,−2,/2
问最少需要多少次可以将 n n n转化为 0 0 0
那么正常思维肯定是如果数字很大,三个操作中 / 2 /2 /2是变小最快的。
直到到2了可以进行 − 2 -2 −2将其变为 0 0 0(不能看为 / 2 /2 /2,因为 0 ∗ 2 = 0 0*2=0 0∗2=0,而 0 + 2 = 2 0+2=2 0+2=2)
问题就在于偶数的乘除是可逆的,但(在计算机整数运算中)奇数不是
具体的例子 7 / 2 = 3 7/2 = 3 7/2=3 , 但 3 ∗ 2 = 6 3*2 = 6 3∗2=6
所以逆推法在遇到奇数如果直接去除2最好推出的答案有问题。
最简单的例子就是 7 7 7
7 / 2 = 3 , 3 / 2 = 1 , 1 − 1 = 0 7/2 = 3 , 3/2 = 1 , 1-1 = 0 7/2=3,3/2=1,1−1=0为三部
但实际上三步无法从 0 0 0通过 + 1 , + 2 , × 2 +1,+2,\times 2 +1,+2,×2变为 7 7 7
根本的原因就在于计算机整数运算的向下取整
所以最简单的解决办法就是,遇到奇数通过加减将其变为偶数即可。
因为加减是可逆的,无任何问题。
逆推法的在运用的重点在于每次操作必须可逆。
只需保证 n n n到 0 0 0的速度是最快的,用的操作是最少的即可(其中暗含贪心思想)。
很容易验证除了 0 , 2 0,2 0,2以外的正偶数进行 / 2 /2 /2的操作一定是最佳的。
也就是说 a / 2 ≤ a − 2 < a − 1 a/2 \le a-2 \lt a-1 a/2≤a−2<a−1
对于奇数的证明从正推可以得到一点,因为 2 2 2为偶数,所以奇数只能通过 + 1 +1 +1操作得到。
也就对于着逆推的 − 1 -1 −1操作。
总结思路
- 从n开始
- 遇到偶数就除二,否则-1
- 重复第二步直到数字变为2
答案就是操作第二步的步数+1
时间复杂度分析
因为每次基本上都是以 / 2 /2 /2进行所以时间复杂度约为 O ( l o g 2 n ) O(log_2 n) O(log2n)
伪代码

赛时代码
#include <iostream>
#include <queue>
#include <tuple>
#include <map>
#define int long long
using namespace std;signed main(){int n;cin >> n;int sum = 0;if(n&1){sum ++ ; n--;}while(n){if(n == 2){sum ++;break;}n >>= 1;sum ++;//cout << n << ' ';if(n&1){sum ++ ; n--;continue;}}cout << sum;return 0;
}
相关文章:
【每日一题】【逆推法 + 贪心】【数学】造数 河南萌新联赛2024第(一)场:河南农业大学 A题 C++
河南萌新联赛2024第(一)场:河南农业大学 A题 造数 题目描述 样例 #1 样例输入 #1 2样例输出 #1 1样例 #2 样例输入 #2 5样例输出 #2 3做题思路 本题可以用逆推法 将三种操作反过来变为 − 1 , − 2 , / 2 -1 , -2 , /2 −1,−2,/2 …...
刷题计划 day4 【双指针、快慢指针、环形链表】链表下
⚡刷题计划day4继续,可以点个免费的赞哦~ 下一期将会开启哈希表刷题专题,往期可看专栏,关注不迷路, 您的支持是我的最大动力🌹~ 目录 ⚡刷题计划day4继续,可以点个免费的赞哦~ 下一期将会开启哈希表刷题…...
最高200万!苏州成都杭州的这些AI政策补贴,你拿到了吗?
随着全球人工智能技术的迅猛发展,地方政府纷纷出台相关政策以抢占未来科技的制高点。苏州 成都 杭州这三个城市更是推出了一系列AI政策补贴,旨在通过多方面支持,推动本地AI产业的发展。本文将带你了解目前不完全统计到的苏州 成都 杭州三地AI…...
使用两台虚拟机分别部署前端和后端项目
使用两台虚拟机分别部署前端和后端项目 1 部署方案2 准备两台虚拟机,并配置网络环境3 部署后端项目3.1 打包服务3.2 上传jar包到服务器3.3 集成Systemd3.3.1 移动端服务集成Systemd3.3.2 后台管理系统集成Systemd 4 配置域名映射5 部署前端项目5.1 移动端5.1.1 打包…...
Halcon学习之derivate_gauss
HALCON 图像处理库中的一个常用算子,用于计算图像的高斯导数。高斯导数是一种平滑导数,在计算过程中结合了高斯滤波,具有平滑噪声的效果。这个算子可以计算图像的不同导数,如梯度、一阶导数、二阶导数、以及 Hessian 行列式等。 …...
智能优化算法(三):遗传算法
文章目录 1.问题描述2.遗传算法2.1.算法概述2.2.编码操作2.3.选择操作2.4.交叉操作2.5.变异操作2.6.算法流程 3.算法实现3.1.MATLAB代码实现3.2.Python代码实现 4.参考文献 1.问题描述 \quad 在利用启发式算法求解问题时,我们常常需要应用遗传算法解决函数最值问题&…...
Docker部署nacos...用户名密码错误
前提 镜像选择v2.3.0版本,因为最新的没拉下来用的别的地方save load的镜像。 官方示例 官方文档 数据库脚本,直接去数据库新建数据库nacos吧,执行脚本,执行完成后,发现只有建表语句,查询得知,…...
搭建Vue开发环境
一、下载Vue.js 进入官网教程安装 — Vue.js (vuejs.org) 下载开发版本到本地 二、安装 Vue Devtools 安装完成后...
富格林:防范虚假可信投资经验
富格林指出,现货黄金投资作为一种全球性的金融衍生品交易,吸引了无数投资者的目光。它不仅具备避险属性,还是资产配置中不可或缺的一部分。然而,要想在市场中防范虚假陷阱,投资者必须要掌握并且利用可信的投资经验。下…...
Intent的数据传递
在Android开发中,使用Intent在Activity之间传递数据是一种常见的方式。然而,Intent确实有一些大小和类型的限制。 Intent的限制 数据大小限制:虽然官方没有明确说明Intent的数据大小限制,但是Intent是通过Binder机制进行IPC&…...
【NPU 系列专栏 3.1 -- - ARM NPU 有哪些型号?】
请阅读【嵌入式及芯片开发学必备专栏】 文章目录 ARM X 系列和 Z 系列 NPU 详解ARM X 系列 NPUARM X 系列 NPU型号和算力ARM X 系列 NPU 应用场景ARM Z 系列 NPU 简介ARM Z 系列 NPU 型号和算力ARM Z 系列 NPU 应用场景SummaryARM X 系列和 Z 系列 NPU 详解 ARM 的 NPU(Neura…...
如何运行别人的vue项目
文章目录 如何运行别人的vue项目一、删除现有的node_modules二、npm换源三、清理缓存四、进行依赖安装五、运行服务器 如何运行别人的vue项目 一、删除现有的node_modules 二、npm换源 换成淘宝的镜像源 查看当前镜像源 npm config get registry更换淘宝镜像源 npm confi…...
【Django5】内置Admin系统
系列文章目录 第一章 Django使用的基础知识 第二章 setting.py文件的配置 第三章 路由的定义与使用 第四章 视图的定义与使用 第五章 二进制文件下载响应 第六章 Http请求&HttpRequest请求类 第七章 会话管理(Cookies&Session) 第八章 文件上传…...
汕头 西月 公司的面试
1;常用的框架,tp 他的特性 2:事务,的使用的场景。 3:redis 的使用的场景 。 4:redis 集合使用的场景...
Spring Boot 实现不同项目之间的远程
Spring Boot 实现不同项目之间的远程调用 在分布式系统中,通常需要多个微服务之间进行通信。在 Spring Boot 中,实现远程调用的方式有很多,常见的方法包括使用 REST API、gRPC、以及 Spring Cloud Feign 等。本篇博客将详细介绍如何在不同的…...
【VS2019安装+QT配置】
【VS2019安装QT配置】 1. 前言2. 下载visual studio20193. visual studio2019安装4. 环境配置4.1 系统环境变量配置4.2 qt插件开发 5. Visual Studio导入QT项目6. 总结 1. 前言 前期安装了qt,发现creator编辑器并不好用,一点都不时髦。在李大师的指导下&…...
敏感信息泄露wp
1.右键查看网页源代码 2.前台JS绕过,ctrlU绕过JS查看源码 3.开发者工具,网络,查看协议 4.后台地址在robots,拼接目录/robots.txt 5.用dirsearch扫描,看到index.phps,phps中有源码,拼接目录,下载index.phps …...
首屏性能优化
* 减少HTTP请求 * 合并css 和 JS 文件, * 图片精灵:将多个小图标合并成一张图片,通过CSS定位显示所需部分 * 内联小型资源:对于一些小的CSS和js代码,直接内联到HTML中 * 优化资源加载 * 延迟加载:对非关…...
HVV | .NET 攻防工具库,值得您拥有!
01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失…...
angular入门基础教程(九)依赖注入(DI)
依赖注入 Angular 中的依赖注入(DI)是框架最强大的特性之一。可以将依赖注入视为 Angular 在运行时为你的应用 提供所需资源的能力。依赖项可以是服务或其他资源。 使用服务的一种方式是作为与数据和 API 交互的方式。为了使服务可重用,应该…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
