当前位置: 首页 > news >正文

【每日一题】【逆推法 + 贪心】【数学】造数 河南萌新联赛2024第(一)场:河南农业大学 A题 C++

河南萌新联赛2024第(一)场:河南农业大学 A题

造数

题目描述

在这里插入图片描述

样例 #1

样例输入 #1

2

样例输出 #1

1

样例 #2

样例输入 #2

5

样例输出 #2

3

做题思路

本题可以用逆推法
将三种操作反过来变为
− 1 , − 2 , / 2 -1 , -2 , /2 1,2,/2
问最少需要多少次可以将 n n n转化为 0 0 0

那么正常思维肯定是如果数字很大,三个操作中 / 2 /2 /2是变小最快的。
直到到2了可以进行 − 2 -2 2将其变为 0 0 0(不能看为 / 2 /2 /2,因为 0 ∗ 2 = 0 0*2=0 02=0,而 0 + 2 = 2 0+2=2 0+2=2)

问题就在于偶数的乘除是可逆的,但(在计算机整数运算中)奇数不是

具体的例子 7 / 2 = 3 7/2 = 3 7/2=3 , 但 3 ∗ 2 = 6 3*2 = 6 32=6

所以逆推法在遇到奇数如果直接去除2最好推出的答案有问题。

最简单的例子就是 7 7 7

7 / 2 = 3 , 3 / 2 = 1 , 1 − 1 = 0 7/2 = 3 , 3/2 = 1 , 1-1 = 0 7/2=3,3/2=1,11=0为三部
但实际上三步无法从 0 0 0通过 + 1 , + 2 , × 2 +1,+2,\times 2 +1,+2,×2变为 7 7 7

根本的原因就在于计算机整数运算的向下取整

所以最简单的解决办法就是,遇到奇数通过加减将其变为偶数即可。

因为加减是可逆的,无任何问题。

逆推法的在运用的重点在于每次操作必须可逆。
只需保证 n n n 0 0 0的速度是最快的,用的操作是最少的即可(其中暗含贪心思想)。
很容易验证除了 0 , 2 0,2 0,2以外的正偶数进行 / 2 /2 /2的操作一定是最佳的。
也就是说 a / 2 ≤ a − 2 < a − 1 a/2 \le a-2 \lt a-1 a/2a2<a1

对于奇数的证明从正推可以得到一点,因为 2 2 2为偶数,所以奇数只能通过 + 1 +1 +1操作得到。
也就对于着逆推的 − 1 -1 1操作。

总结思路

  1. 从n开始
  2. 遇到偶数就除二,否则-1
  3. 重复第二步直到数字变为2

答案就是操作第二步的步数+1

时间复杂度分析

因为每次基本上都是以 / 2 /2 /2进行所以时间复杂度约为 O ( l o g 2 n ) O(log_2 n) O(log2n)

伪代码

在这里插入图片描述

赛时代码

#include <iostream>
#include <queue>
#include <tuple>
#include <map>
#define int long long
using namespace std;signed main(){int n;cin >> n;int sum = 0;if(n&1){sum ++ ; n--;}while(n){if(n == 2){sum ++;break;}n >>= 1;sum ++;//cout << n << ' ';if(n&1){sum ++ ; n--;continue;}}cout << sum;return 0;
}

相关文章:

【每日一题】【逆推法 + 贪心】【数学】造数 河南萌新联赛2024第(一)场:河南农业大学 A题 C++

河南萌新联赛2024第&#xff08;一&#xff09;场&#xff1a;河南农业大学 A题 造数 题目描述 样例 #1 样例输入 #1 2样例输出 #1 1样例 #2 样例输入 #2 5样例输出 #2 3做题思路 本题可以用逆推法 将三种操作反过来变为 − 1 , − 2 , / 2 -1 , -2 , /2 −1,−2,/2 …...

刷题计划 day4 【双指针、快慢指针、环形链表】链表下

⚡刷题计划day4继续&#xff0c;可以点个免费的赞哦~ 下一期将会开启哈希表刷题专题&#xff0c;往期可看专栏&#xff0c;关注不迷路&#xff0c; 您的支持是我的最大动力&#x1f339;~ 目录 ⚡刷题计划day4继续&#xff0c;可以点个免费的赞哦~ 下一期将会开启哈希表刷题…...

最高200万!苏州成都杭州的这些AI政策补贴,你拿到了吗?

随着全球人工智能技术的迅猛发展&#xff0c;地方政府纷纷出台相关政策以抢占未来科技的制高点。苏州 成都 杭州这三个城市更是推出了一系列AI政策补贴&#xff0c;旨在通过多方面支持&#xff0c;推动本地AI产业的发展。本文将带你了解目前不完全统计到的苏州 成都 杭州三地AI…...

使用两台虚拟机分别部署前端和后端项目

使用两台虚拟机分别部署前端和后端项目 1 部署方案2 准备两台虚拟机&#xff0c;并配置网络环境3 部署后端项目3.1 打包服务3.2 上传jar包到服务器3.3 集成Systemd3.3.1 移动端服务集成Systemd3.3.2 后台管理系统集成Systemd 4 配置域名映射5 部署前端项目5.1 移动端5.1.1 打包…...

Halcon学习之derivate_gauss

HALCON 图像处理库中的一个常用算子&#xff0c;用于计算图像的高斯导数。高斯导数是一种平滑导数&#xff0c;在计算过程中结合了高斯滤波&#xff0c;具有平滑噪声的效果。这个算子可以计算图像的不同导数&#xff0c;如梯度、一阶导数、二阶导数、以及 Hessian 行列式等。 …...

智能优化算法(三):遗传算法

文章目录 1.问题描述2.遗传算法2.1.算法概述2.2.编码操作2.3.选择操作2.4.交叉操作2.5.变异操作2.6.算法流程 3.算法实现3.1.MATLAB代码实现3.2.Python代码实现 4.参考文献 1.问题描述 \quad 在利用启发式算法求解问题时&#xff0c;我们常常需要应用遗传算法解决函数最值问题&…...

Docker部署nacos...用户名密码错误

前提 镜像选择v2.3.0版本&#xff0c;因为最新的没拉下来用的别的地方save load的镜像。 官方示例 官方文档 数据库脚本&#xff0c;直接去数据库新建数据库nacos吧&#xff0c;执行脚本&#xff0c;执行完成后&#xff0c;发现只有建表语句&#xff0c;查询得知&#xff0c…...

搭建Vue开发环境

一、下载Vue.js 进入官网教程安装 — Vue.js (vuejs.org) 下载开发版本到本地 二、安装 Vue Devtools 安装完成后...

富格林:防范虚假可信投资经验

富格林指出&#xff0c;现货黄金投资作为一种全球性的金融衍生品交易&#xff0c;吸引了无数投资者的目光。它不仅具备避险属性&#xff0c;还是资产配置中不可或缺的一部分。然而&#xff0c;要想在市场中防范虚假陷阱&#xff0c;投资者必须要掌握并且利用可信的投资经验。下…...

Intent的数据传递

在Android开发中&#xff0c;使用Intent在Activity之间传递数据是一种常见的方式。然而&#xff0c;Intent确实有一些大小和类型的限制。 Intent的限制 数据大小限制&#xff1a;虽然官方没有明确说明Intent的数据大小限制&#xff0c;但是Intent是通过Binder机制进行IPC&…...

【NPU 系列专栏 3.1 -- - ARM NPU 有哪些型号?】

请阅读【嵌入式及芯片开发学必备专栏】 文章目录 ARM X 系列和 Z 系列 NPU 详解ARM X 系列 NPUARM X 系列 NPU型号和算力ARM X 系列 NPU 应用场景ARM Z 系列 NPU 简介ARM Z 系列 NPU 型号和算力ARM Z 系列 NPU 应用场景SummaryARM X 系列和 Z 系列 NPU 详解 ARM 的 NPU(Neura…...

如何运行别人的vue项目

文章目录 如何运行别人的vue项目一、删除现有的node_modules二、npm换源三、清理缓存四、进行依赖安装五、运行服务器 如何运行别人的vue项目 一、删除现有的node_modules 二、npm换源 换成淘宝的镜像源 查看当前镜像源 npm config get registry更换淘宝镜像源 npm confi…...

【Django5】内置Admin系统

系列文章目录 第一章 Django使用的基础知识 第二章 setting.py文件的配置 第三章 路由的定义与使用 第四章 视图的定义与使用 第五章 二进制文件下载响应 第六章 Http请求&HttpRequest请求类 第七章 会话管理&#xff08;Cookies&Session&#xff09; 第八章 文件上传…...

汕头 西月 公司的面试

1&#xff1b;常用的框架&#xff0c;tp 他的特性 2&#xff1a;事务&#xff0c;的使用的场景。 3&#xff1a;redis 的使用的场景 。 4&#xff1a;redis 集合使用的场景...

Spring Boot 实现不同项目之间的远程

Spring Boot 实现不同项目之间的远程调用 在分布式系统中&#xff0c;通常需要多个微服务之间进行通信。在 Spring Boot 中&#xff0c;实现远程调用的方式有很多&#xff0c;常见的方法包括使用 REST API、gRPC、以及 Spring Cloud Feign 等。本篇博客将详细介绍如何在不同的…...

【VS2019安装+QT配置】

【VS2019安装QT配置】 1. 前言2. 下载visual studio20193. visual studio2019安装4. 环境配置4.1 系统环境变量配置4.2 qt插件开发 5. Visual Studio导入QT项目6. 总结 1. 前言 前期安装了qt&#xff0c;发现creator编辑器并不好用&#xff0c;一点都不时髦。在李大师的指导下&…...

敏感信息泄露wp

1.右键查看网页源代码 2.前台JS绕过&#xff0c;ctrlU绕过JS查看源码 3.开发者工具&#xff0c;网络&#xff0c;查看协议 4.后台地址在robots,拼接目录/robots.txt 5.用dirsearch扫描&#xff0c;看到index.phps,phps中有源码&#xff0c;拼接目录&#xff0c;下载index.phps …...

首屏性能优化

* 减少HTTP请求 * 合并css 和 JS 文件&#xff0c; * 图片精灵&#xff1a;将多个小图标合并成一张图片&#xff0c;通过CSS定位显示所需部分 * 内联小型资源&#xff1a;对于一些小的CSS和js代码&#xff0c;直接内联到HTML中 * 优化资源加载 * 延迟加载&#xff1a;对非关…...

HVV | .NET 攻防工具库,值得您拥有!

01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等&#xff08;包括但不限于&#xff09;进行检测或维护参考&#xff0c;未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失&#xf…...

angular入门基础教程(九)依赖注入(DI)

依赖注入 Angular 中的依赖注入&#xff08;DI&#xff09;是框架最强大的特性之一。可以将依赖注入视为 Angular 在运行时为你的应用 提供所需资源的能力。依赖项可以是服务或其他资源。 使用服务的一种方式是作为与数据和 API 交互的方式。为了使服务可重用&#xff0c;应该…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...

大模型真的像人一样“思考”和“理解”吗?​

Yann LeCun 新研究的核心探讨&#xff1a;大语言模型&#xff08;LLM&#xff09;的“理解”和“思考”方式与人类认知的根本差异。 核心问题&#xff1a;大模型真的像人一样“思考”和“理解”吗&#xff1f; 人类的思考方式&#xff1a; 你的大脑是个超级整理师。面对海量信…...