论文解读:DiAD之SG网络
目录
- 一、SG网络功能介绍
- 二、SG网络代码实现
一、SG网络功能介绍
DiAD论文最主要的创新点就是使用SG网络解决多类别异常检测中的语义信息丢失问题,那么它是怎么实现的保留原始图像语义信息的同时重建异常区域?
与稳定扩散去噪网络的连接: SG网络被设计为与稳定扩散(Stable Diffusion, SD)去噪网络相连接。SD去噪网络本身具有强大的图像生成能力,但可能无法在多类异常检测任务中保持图像的语义信息一致性。SG网络通过引入语义引导机制,使得在重构异常区域时能够参考并保留原始图像的语义上下文。整个框架图中,SG网络与去噪网络的连接如下图所示。
这是论文给出的最终输出,我认为图中圈出来的地方有问题,应该改为SG网络的编码器才对。
语义一致性保持: SG网络在重构过程中,通过在不同尺度下处理噪声,并利用空间感知特征融合(Spatial-aware Feature Fusion, SFF)块融合特征,确保重建过程中保留语义信息。这样,即使在重构异常区域时,也能使修复后的区域与原始图像的语义上下文保持一致。
多尺度特征融合: SFF块将高尺度的语义信息集成到低尺度中,使得在保留原始正常样本信息的同时,能够处理大规模异常区域的重建。这种机制有助于在处理需要广泛重构的区域时,最大化重构的准确性,同时保持图像的语义一致性。从下图中可以看到,特征融合模块还是很好理解的。
与预训练特征提取器的结合: SG网络还与特征空间中的预训练特征提取器相结合。预训练特征提取器能够处理输入图像和重建图像,并在不同尺度上提取特征。通过比较这些特征,系统能够生成异常图(anomaly maps),这些图显示了图像中可能存在的异常区域,并给出了异常得分或置信度。这一步骤进一步验证了SG网络在保留语义信息方面的有效性。
避免类别错误: 相比于传统的扩散模型(如DDPM),SG网络通过引入类别条件解决了在多类异常检测任务中可能出现的类别错误问题。LDM虽然通过交叉注意力引入了条件约束,但在随机高斯噪声下去噪时仍可能丢失语义信息。SG网络则通过其语义引导机制,有效地避免了这一问题。
二、SG网络代码实现
这部分代码大概有300行
class SemanticGuidedNetwork(nn.Module):def __init__(self,image_size,in_channels,model_channels,hint_channels,num_res_blocks,attention_resolutions,dropout=0,channel_mult=(1, 2, 4, 8),conv_resample=True,dims=2,use_checkpoint=False,use_fp16=False,num_heads=-1,num_head_channels=-1,num_heads_upsample=-1,use_scale_shift_norm=False,resblock_updown=False,use_new_attention_order=False,use_spatial_transformer=False, # custom transformer supporttransformer_depth=1, # custom transformer supportcontext_dim=None, # custom transformer supportn_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq modellegacy=True,disable_self_attentions=None,num_attention_blocks=None,disable_middle_self_attn=False,use_linear_in_transformer=False,):super().__init__()if use_spatial_transformer:assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'if context_dim is not None:assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'from omegaconf.listconfig import ListConfigif type(context_dim) == ListConfig:context_dim = list(context_dim)if num_heads_upsample == -1:num_heads_upsample = num_headsif num_heads == -1:assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'if num_head_channels == -1:assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'self.dims = dimsself.image_size = image_sizeself.in_channels = in_channelsself.model_channels = model_channelsif isinstance(num_res_blocks, int):self.num_res_blocks = len(channel_mult) * [num_res_blocks]else:if len(num_res_blocks) != len(channel_mult):raise ValueError("provide num_res_blocks either as an int (globally constant) or ""as a list/tuple (per-level) with the same length as channel_mult")self.num_res_blocks = num_res_blocksif disable_self_attentions is not None:# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or notassert len(disable_self_attentions) == len(channel_mult)if num_attention_blocks is not None:assert len(num_attention_blocks) == len(self.num_res_blocks)assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "f"This option has LESS priority than attention_resolutions {attention_resolutions}, "f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "f"attention will still not be set.")self.attention_resolutions = attention_resolutionsself.dropout = dropoutself.channel_mult = channel_multself.conv_resample = conv_resampleself.use_checkpoint = use_checkpointself.dtype = th.float16 if use_fp16 else th.float32self.num_heads = num_headsself.num_head_channels = num_head_channelsself.num_heads_upsample = num_heads_upsampleself.predict_codebook_ids = n_embed is not Nonetime_embed_dim = model_channels * 4self.time_embed = nn.Sequential(linear(model_channels, time_embed_dim),nn.SiLU(),linear(time_embed_dim, time_embed_dim),)self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))])self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])self.input_hint_block = TimestepEmbedSequential(conv_nd(dims, hint_channels, 16, 3, padding=1),nn.SiLU(),conv_nd(dims, 16, 16, 3, padding=1),nn.SiLU(),conv_nd(dims, 16, 32, 3, padding=1, stride=2),nn.SiLU(),conv_nd(dims, 32, 32, 3, padding=1),nn.SiLU(),conv_nd(dims, 32, 96, 3, padding=1, stride=2),nn.SiLU(),conv_nd(dims, 96, 96, 3, padding=1),nn.SiLU(),conv_nd(dims, 96, 256, 3, padding=1, stride=2),nn.SiLU(),zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)))self._feature_size = model_channelsinput_block_chans = [model_channels]ch = model_channelsds = 1for level, mult in enumerate(channel_mult):for nr in range(self.num_res_blocks[level]):layers = [ResBlock(ch,time_embed_dim,dropout,out_channels=mult * model_channels,dims=dims,use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,)]ch = mult * model_channelsif ds in attention_resolutions:if num_head_channels == -1:dim_head = ch // num_headselse:num_heads = ch // num_head_channelsdim_head = num_head_channelsif legacy:# num_heads = 1dim_head = ch // num_heads if use_spatial_transformer else num_head_channelsif exists(disable_self_attentions):disabled_sa = disable_self_attentions[level]else:disabled_sa = Falseif not exists(num_attention_blocks) or nr < num_attention_blocks[level]:layers.append(AttentionBlock(ch,use_checkpoint=use_checkpoint,num_heads=num_heads,num_head_channels=dim_head,use_new_attention_order=use_new_attention_order,) if not use_spatial_transformer else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,use_checkpoint=use_checkpoint))self.input_blocks.append(TimestepEmbedSequential(*layers))self.zero_convs.append(self.make_zero_conv(ch))self._feature_size += chinput_block_chans.append(ch)if level != len(channel_mult) - 1:out_ch = chself.input_blocks.append(TimestepEmbedSequential(ResBlock(ch,time_embed_dim,dropout,out_channels=out_ch,dims=dims,use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,down=True,)if resblock_updownelse Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)))ch = out_chinput_block_chans.append(ch)self.zero_convs.append(self.make_zero_conv(ch))ds *= 2self._feature_size += chif num_head_channels == -1:dim_head = ch // num_headselse:num_heads = ch // num_head_channelsdim_head = num_head_channelsif legacy:# num_heads = 1dim_head = ch // num_heads if use_spatial_transformer else num_head_channelsself.middle_block = TimestepEmbedSequential(ResBlock(ch,time_embed_dim,dropout,dims=dims,use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,),AttentionBlock(ch,use_checkpoint=use_checkpoint,num_heads=num_heads,num_head_channels=dim_head,use_new_attention_order=use_new_attention_order,) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attnch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,use_checkpoint=use_checkpoint),ResBlock(ch,time_embed_dim,dropout,dims=dims,use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,),)self.middle_block_out = self.make_zero_conv(ch)self._feature_size += ch#SFF Blockself.down11 = nn.Sequential(zero_module(nn.Conv2d(640, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.down12 = nn.Sequential(zero_module(nn.Conv2d(640, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.down13 = nn.Sequential(zero_module(nn.Conv2d(640, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.down21 = nn.Sequential(zero_module(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.down22 = nn.Sequential(zero_module(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.down23 = nn.Sequential(zero_module(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.down31 = nn.Sequential(zero_module(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.down32 = nn.Sequential(zero_module(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.down33 = nn.Sequential(zero_module(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1, bias=False)),nn.InstanceNorm2d(1280),nn.SiLU(),)self.silu = nn.SiLU()def make_zero_conv(self, channels):return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))def forward(self, x, hint, timesteps, context, **kwargs):t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)emb = self.time_embed(t_emb)guided_hint = self.input_hint_block(hint, emb, context)outs = []h = x.type(self.dtype)for module, zero_conv in zip(self.input_blocks, self.zero_convs):if guided_hint is not None:h = module(h, emb, context)h += guided_hintguided_hint = Noneelse:h = module(h, emb, context)outs.append(zero_conv(h, emb, context))#SFF Block Implementationouts[9] = self.silu(outs[9]+self.down11(outs[6])+self.down21(outs[7])+self.down31(outs[8]))outs[10] = self.silu(outs[10]+self.down12(outs[6])+self.down22(outs[7])+self.down32(outs[8]))outs[11] = self.silu(outs[11]+self.down13(outs[6])+self.down23(outs[7])+self.down33(outs[8]))h = self.middle_block(h, emb, context)outs.append(self.middle_block_out(h, emb, context))return outs
相关文章:

论文解读:DiAD之SG网络
目录 一、SG网络功能介绍二、SG网络代码实现 一、SG网络功能介绍 DiAD论文最主要的创新点就是使用SG网络解决多类别异常检测中的语义信息丢失问题,那么它是怎么实现的保留原始图像语义信息的同时重建异常区域? 与稳定扩散去噪网络的连接: S…...

Prometheus+Grafana 监控平台实践-搭建常用服务监控告警
前言 Prometheus 是一个开放性的监控解决方案,通过各种 Exporter 采集当前主机/服务的数据,和 Grafana 相结合可以实现强大的监控和可视化功能 本篇将分享使用 docker compose 构建 Prometheus+Grafana,并监控之前文章所搭建的主机&服务,分享日常使用的一些使用经验 文…...

leaflet加载天地图:卫星底图(影响地图) 和 路网底图(矢量地图)【webgis】
文章目录 引言I 申请Key1.1 应用创建1.2 账号认证II 使用申请的key进行相关的服务调用2.1 服务API2.2 初始化地图组件2.3 加载影像底图和影像注记2.4 地理编码查询引言 自己没有对应的地图服务器和地理查询服务器的时候,使用天地图来实现业务的快速支撑。 基于天地图使用Leaf…...

微软蓝屏事件:全球网络安全与系统稳定性的警示
文章目录 每日一句正能量前言探讨软件更新流程中的风险管理和质量控制机制软件更新的风险风险管理策略质量控制措施测试流程缺陷识别实施质量控制结论 提供预防类似大规模故障的最佳方案或应急响应对策设计冗余系统实施灾难恢复计划建立高可用架构应急响应对策利用自动化工具和…...
【51单片机仿真】基于51单片机设计的整数/小数计算器系统仿真源码文档——文末资料下载
演示: 摘要 本项目设计并实现了一种基于51单片机的多功能计算器系统。系统采用STC89C52单片机作为主控制器,结合LCD显示模块、矩阵键盘等外设,实现了基本的整数、小数算术运算功能,包括加、减、乘、除、取模等。本文详细介绍了系统的硬件设计和软件实现,并对系统的功能和…...
ubuntu安装dockergitlab
#更换阿里云进行配置GPG 密钥 curl -fsSL https://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | sudo apt-key add - sudo add-apt-repository \ "deb [archarm64] https://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_release -cs) stable" #如果出现错…...
自定义视图提示:提升Laravel用户体验的秘诀
自定义视图提示:提升Laravel用户体验的秘诀 在Laravel框架中,视图提示是一种向用户显示友好信息的方式,它们可以是表单输入后的错误信息、成功通知或其他重要的用户反馈。自定义视图提示不仅可以增强用户体验,还可以使应用程序的…...
关于黑马Ajax项目的笔记
一、token的介绍 概念: 访问权限的令牌,本质上是一串字符串 创建: 正确登录后,由后端签发并返回 作用: 判断是否有登录状态等,控制访问权限 注意 前端只能判断token有无,后端才能判断to…...

Java面试八股之JDK 动态代理和 CGLIB 动态代理的区别
JDK 动态代理和 CGLIB 动态代理的区别 JDK 动态代理和 CGLIB 动态代理都是在 Java 中实现动态代理的两种常见方式。它们各自有不同的特点和适用场景。下面详细介绍一下这两种动态代理的区别: 1. 代理机制 JDK 动态代理: 实现原理: JDK 动态代理基于 Java 的反射…...

验证码邮件接口测试指南?接口的优化策略?
验证码邮件接口集成步骤与注意事项?API接口设计要点? 在现代应用程序开发中,验证码邮件接口是保障用户安全和验证身份的重要工具。AokSend将详细介绍验证码邮件接口的测试指南,帮助开发者确保接口的稳定性和可靠性。 验证码邮件…...

基于Java的智能停车场管理系统
你好,我是计算机学姐码农小野!如果你对智能停车场管理系统感兴趣或有相关需求,欢迎私信联系我。 开发语言: Java 数据库: MySQL 技术: JSP技术 JAVA B/S架构 工具: 浏览器(…...

前后端分离开发遵循接口规范-YAPI
目前,网站主流开发方式是前后端分离。因此前后端必须遵循一套统一的规范,才能保证前后端进行正常的数据(JSON数据格式)请求、影响,这套规范即是 YAPI. 产品经理撰写原型; 前端或后端撰写接口文档。 YAPI…...
把本地的项目代码初始化到git仓库
cd /path/to/your/project# 在当前目录创建新的仓库 git init# 添加当前目录下的所有文件到暂存区 git add .# 添加commit message git commit -m "Initial commit"# 关联远程仓库 git remote add origin https://github.com/username/repository.git# 更改默认仓库&…...

白杨SEO:公众号如何找选题?如何利用ai工具写公众号?公众号变现方式有哪些?22个公众号营销常见问题解答大全!
前言:为什么分享这个?因为我发现不管是SEO从业者还是自媒体从业者,想通过公众号来做影响力或流量,甚至变现,但很多朋友公众号都没弄懂,所以分享一下。 分享问题大纲如下: 1、公众号如何申请注册…...
零基础学习深度学习以及模块缝合总结
Python基础知识 推荐视频:黑马程序员python教程,8天python从入门到精通,学python看这套就够了_哔哩哔哩_bilibili 工具和资源:PyTorch、Zotero、谷歌学术、Github、B站、ChatGPT等。 深度学习基本知识 张量维度表示:…...

XXE-lab-master靶场:PHP_xxe
目录 有回显 测试回显位置 构建payload 无回显数据外带 构建payload 漏洞修复 XXE-lab是一个一个包含php,java,python,C#等各种语言版本的XXE漏洞靶场。 下载地址:https://github.com/c0ny1/xxe-lab 将PHPStudy的中间件与版本信息调制为 php-5.4.29Apache 以…...

视图,存储过程和触发器
目录 视图 创建视图: 视图的使用 查看库中所有的视图 删除视图 视图的作用: 存储过程: 为什么使用存储过程? 什么是存储过程? 存储过程的创建 创建一个最简单的存储过程 使用存储过程 删除存储过程 带参的存储…...

sqli-labs(6-10)关通关讲解
sqli-labs(6-10)关通关讲解 Less-6 方法一:手工注入 1.判断闭合 http://localhost/sqli-labs/Less-6/?id1" //报错 http://localhost/sqli-labs/Less-6/?id1" -- //正常 http://localhost/sqli-labs/Less-6/?id1" and 11 -- http://localhos…...

【解决方法】git clone出现 curl 56 OpenSSL SSL_read: Connection was reset, errno 10054
当我们克隆别人的项目出现以下提示信息时候 remote: Enumerating objects: 7095, done. error: RPC failed; curl 56 OpenSSL SSL_read: Connection was reset, errno 10054 error: 2292 bytes of body are still expected fetch-pack: unexpected disconnect while reading s…...

机械拆装-基于Unity-本地数据持久化
目录 1. 数据结构简介:数据的集合 1.1 线性数据结构 1.2 非线性数据结构 2. 对数据集合的操作: 3. 数据持久化 3.1 数据的序列化存储 3.2 JSON文件硬盘存储 3.2.1 Json文件允许存储的数据类型 3.2.2 Json文件的语法格式 3.2.3 Json文件的读取 3.2.4 …...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

C++中vector类型的介绍和使用
文章目录 一、vector 类型的简介1.1 基本介绍1.2 常见用法示例1.3 常见成员函数简表 二、vector 数据的插入2.1 push_back() —— 在尾部插入一个元素2.2 emplace_back() —— 在尾部“就地”构造对象2.3 insert() —— 在任意位置插入一个或多个元素2.4 emplace() —— 在任意…...