基于python的BP神经网络红酒品质分类预测模型
1 导入必要的库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import classification_report, confusion_matrix
# 忽略Matplotlib的警告(可选)
import warnings
warnings.filterwarnings("ignore")
# 设置中文显示和负号正常显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
2 数据加载与预处理
# 读取数据
df = pd.read_csv('train.csv') # 处理缺失值(这里假设我们删除含有缺失值的行)
df.dropna(inplace=True) # 处理重复值(这里选择删除重复的行)
df.drop_duplicates(inplace=True) # 将'wine types'列的文本转换为数值
df['wine types'] = df['wine types'].map({'red': 1, 'white': 2})
# 假设'quality'是我们要预测的标签
X = df.drop('quality', axis=1)
y = df['quality']
3 数据探索
# 选择绘制特征数据的折线图
X_columns_to_plot = X.columnsdf_plot = df[X_columns_to_plot] df_plot.plot(subplots=True, figsize=(15, 15))
plt.tight_layout()
plt.show()

图 3-1
4 BP神经网络模型构建
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler # 分离特征和标签
X = df.drop('quality', axis=1)
y = df['quality'] # 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征缩放
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test) # 构建模型
model = Sequential([ Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],)), Dense(32, activation='relu'), Dense(10, activation='softmax') # 假设有10个类别,根据实际情况调整
]) # 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型
history = model.fit(X_train_scaled, y_train, epochs=100, validation_split=0.2, verbose=1)

图 4-1
5 训练评估可视化
# 绘制训练和验证的准确率与损失
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], color='#B0D5DF',label='Training Accuracy')
plt.plot(history.history['val_accuracy'], color='#1BA784',label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend() plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], color='#D11A2D',label='Training Loss')
plt.plot(history.history['val_loss'], color='#87723E', label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

图 5-1 过拟合
成功过拟合了,其实早有预料,我手里的数据集都挺顽固的,训练效果都不好。
6 正则化
这里采用L2正则化
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.regularizers import l2
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler # 分离特征和标签
X = df.drop('quality', axis=1)
y = df['quality'] # 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征缩放
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test) # 构建模型,添加L2正则化
model = Sequential([ Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],), kernel_regularizer=l2(0.01)), # 对第一个Dense层的权重添加L2正则化 Dense(64, activation='relu', kernel_regularizer=l2(0.01)), # 对第二个Dense层的权重也添加L2正则化 Dense(10, activation='softmax') # 输出层,假设是多分类问题
]) # 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型
history = model.fit(X_train_scaled, y_train, epochs=100, validation_split=0.2, verbose=1)
# 绘制训练和验证的准确率与损失
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], color='#B0D5DF',label='Training Accuracy')
plt.plot(history.history['val_accuracy'], color='#1BA784',label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend() plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], color='#D11A2D',label='Training Loss')
plt.plot(history.history['val_loss'], color='#87723E', label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

图 6-1
这就不错了。
相关文章:
基于python的BP神经网络红酒品质分类预测模型
1 导入必要的库 import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras.models import Sequential from tenso…...
Kylin与Spark:大数据技术集成的深度解析
引言 在大数据时代,企业面临着海量数据的处理和分析需求。Kylin 和 Spark 作为两个重要的大数据技术,各自在数据处理领域有着独特的优势。Kylin 是一个开源的分布式分析引擎,专为大规模数据集的 OLAP(在线分析处理)查…...
⌈ 传知代码 ⌋ 利用scrapy框架练习爬虫
💛前情提要💛 本文是传知代码平台中的相关前沿知识与技术的分享~ 接下来我们即将进入一个全新的空间,对技术有一个全新的视角~ 本文所涉及所有资源均在传知代码平台可获取 以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦&#x…...
深入了解 Python 面向对象编程(最终篇)
大家好!今天我们将继续探讨 Python 中的类及其在面向对象编程(OOP)中的应用。面向对象编程是一种编程范式,它使用“对象”来模拟现实世界的事务,使代码更加结构化和易于维护。在上一篇文章中,我们详细了解了…...
手把手教你实现基于丹摩智算的YoloV8自定义数据集的训练、测试。
摘要 DAMODEL(丹摩智算)是专为AI打造的智算云,致力于提供丰富的算力资源与基础设施助力AI应用的开发、训练、部署。 官网链接:https://damodel.com/register?source6B008AA9 平台的优势 💡 超友好! …...
SSH相关
前言 这篇是K8S及Rancher部署的前置知识。因为项目部署测试需要,向公司申请了一个虚拟机做服务器用。此前从未接触过服务器相关的东西,甚至命令也没怎么接触过(接触最多的还是git命令,但我日常用sourceTree)。本篇SSH…...
mysql超大分页问题处理~
大家好,我是程序媛雪儿,今天咱们聊mysql超大分页问题处理。 超大分页问题是什么? 数据量很大的时候,在查询中,越靠后,分页查询效率越低 例如 select * from tb_sku limit 0,10; select * from tb_sku lim…...
Gitlab以及分支管理
一、概述 Git 是一个分布式版本控制系统,用于跟踪文件的变化,尤其是源代码的变化。它由 Linus Torvalds 于 2005 年开发,旨在帮助管理大型软件项目的开发过程。 二、Git 的功能特性 Git 是关注于文件数据整体的变化,直接会将文件…...
探索Axure在数据可视化原型设计中的无限可能
在当今数字化浪潮中,产品设计不仅关乎美观与功能的平衡,更在于如何高效、直观地传达复杂的数据信息。Axure RP,作为原型设计领域的佼佼者,其在数据可视化原型设计中的应用,正逐步揭开产品设计的新篇章。本文将从多个维…...
Redis 内存淘汰策略
Redis 作为一个内存数据库,必须在内存使用达到配置的上限时采取策略来处理新数据的写入需求。Redis 提供了多种内存淘汰策略(Eviction Policies),以决定在内存达到上限时应该移除哪些数据。...
逆天!吴恩达+OpenAI合作出了大模型课程!重磅推出《LLM CookBook》中文版
吴恩达老师与OpenAI合作推出的大模型系列教程,从开发者在大型模型时代的必备技能出发,深入浅出地介绍了如何基于大模型API和LangChain架构快速开发出结合大模型强大能力的应用。 这些教程非常适合开发者学习,以便开始基于LLM实际构建应用程序…...
uint16_t、uint32_t类型数据高低字节互换
1. 使用位运算和逻辑运算符实现 #include<stdio.h> #include<stdint.h> int main() {void test_3() {uint16_t version = 0x1234;printf("%#x\n",(uint8_t)version);printf("%#x\n", version>>8);/*** 在C语言中,uint16和uint8是无符号…...
Java实现数据库图片上传(包含从数据库拿图片传递前端渲染)-图文详解
目录 1、前言: 2、数据库搭建 : 建表语句: 3、后端实现,将图片存储进数据库: 思想: 找到图片位置(如下图操作) 图片转为Fileinputstream流的工具类(可直接copy&#…...
开放式耳机原理是什么?通过不入耳的方式,享受健康听音体验
在开放式耳机的领域又细分了骨传导和气传导两种类型的耳机, 气传导开放式耳机原理 气传导是传统的声音传递方式,它依赖于空气作为声音传播的介质。 声源输入:与普通开放式耳机相同,音频设备通过耳机线将电信号传递到耳机。 驱动…...
有趣的PHP小游戏——猜数字
猜数字 这个游戏会随机生成一个1到100之间的数字,然后你需要猜测这个数字是什么。每次你输入一个数字后,程序会告诉你这个数字是“高了”还是“低了”,直到你猜对为止! 使用指南: 代码如下,保存到一个php中:如 index.php。代码部署到PHP服务器,比如 phpstudy。运行网…...
logstash 全接触
简述什么是Logstash ? Logstash是一个开源的集中式事件和日志管理器。它是 ELK(ElasticSearch、Logstash、Kibana)堆栈的一部分。在本教程中,我们将了解 Logstash 的基础知识、其功能以及它具有的各种组件。 Logstash 是一种基于…...
Windows本地构建镜像推送远程仓库
下载 Docker Desktop https://smartidedl.blob.core.chinacloudapi.cn/docker/20210926/Docker-win.exe 使用本地docker构建镜像和推送至远程仓库(harbor) 1、开启docker的2375端口 2、配置远程仓库push镜像可以通过http harbor.soujer.com:5000ps&am…...
计算机毕业设计LSTM+Tensorflow股票分析预测 基金分析预测 股票爬虫 大数据毕业设计 深度学习 机器学习 数据可视化 人工智能
|-- 项目 |-- db.sqlite3 数据库相关 重要 想看数据,可以用navicat打开 |-- requirements.txt 项目依赖库,可以理解为部分技术栈之类的 |-- data 原始数据文件 |-- data 每个股票的模型保存位置 |-- app 主要代码文件夹 | |-- mod…...
最新版上帝粒子The God Particle(winmac),Cradle Complete Bundle 2024绝对可用
一。Cradle插件套装Cradle Complete Bundle 2024 Cradle 是一家音乐技术公司,致力于为个人提供所需的工具,使他们成为最好的音乐人。自发布我们的第一款插件 The Prince 以来,我们一直致力于不懈地打造可靠、有益且易于使用的产品,…...
数 据 库
数据库是什么? 如何按照和移植数据库? 如何在命令行使用SQL语句操作数据库? 如何在C / C程序中操作数据库? 1. 数据库是什么? 数据库...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
