Mindspore框架DCGAN模型实现漫画头像生成|(二)DCGAN模型构建
Mindspore框架DCGAN模型实现漫画头像生成
- Mindspore框架DCGAN模型实现漫画头像生成|(一)漫画头像数据集准备
- Mindspore框架DCGAN模型实现漫画头像生成|(二)DCGAN模型构建
- Mindspore框架DCGAN模型实现漫画头像生成|(三)DCGAN模型训练和推理
- Mindspore框架DCGAN模型实现漫画头像生成|(四)应用程序生成实践
Mindspore框架DCGAN模型实现漫画头像生成|(二)DCGAN模型构建
DCGAN,全称是 Deep Convolution Generative Adversarial Networks,深度卷积生成对抗网络。
1. DCGAN模型特点
- make GAN + CNN more stable and deeper,能够产生更高分辨率的图像;
- 全卷积网络(all convolutional net):用步幅卷积(strided convolutions)替代确定性空间池化函数(deterministic spatial pooling functions)(比如最大池化),让网络自己学习downsampling方式。作者对 generator 和 discriminator 都采用了这种方法。
- 取消全连接层:使用 全局平均池化(global average pooling)替代 fully connected layer。global average pooling会降低收敛速度,但是可以提高模型的稳定性。GAN的输入采用均匀分布初始化,可能会使用全连接层(矩阵相乘),然后得到的结果可以reshape成一个4 dimension的tensor,然后后面堆叠卷积层即可;对于鉴别器,最后的卷积层可以先flatten,然后送入一个sigmoid分类器。
- 批归一化(Batch Normalization):BN 被证明是深度学习中非常重要的 加速收敛 和 减缓过拟合 的手段。这样有助于解决 poor initialization 问题并帮助梯度流向更深的网络。防止G把所有rand input都折叠到一个点,同时防止样本震荡和模型的不稳定,只对生成器(G)的输出层和鉴别器(D)的输入层使用BN。
- Leaky Relu 激活函数: 生成器(G),输出层使用tanh 激活函数,其余层使用relu 激活函数。鉴别器(D),都采用leaky rectified activation。
- DCGAN生成器G的结构如下:

2. 构造网络:生成器G
生成器G的功能是将隐向量z映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的 RGB 图像。
import mindspore as ms
from mindspore import nn, ops
from mindspore.common.initializer import Normalweight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)# 通过输入部分中设置的nz、ngf和nc来影响代码中的生成器结构。
class Generator(nn.Cell):"""DCGAN网络生成器"""def __init__(self):super(Generator, self).__init__()self.generator = nn.SequentialCell(nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf, gamma_init=gamma_init),nn.ReLU(),nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),nn.Tanh())def construct(self, x):return self.generator(x)generator = Generator()
注意:nz是隐向量z的长度,ngf与通过生成器传播的特征图的大小有关,nc是输出图像中的通道数。

2. 构造网络:判别器D
判别器D是一个二分类网络模型,输出判定该图像为真实图的概率。形如:

通过一系列的Conv2d、BatchNorm2d和LeakyReLU层对其进行处理,最后通过Sigmoid激活函数得到最终概率。
class Discriminator(nn.Cell):"""DCGAN网络判别器"""def __init__(self):super(Discriminator, self).__init__()self.discriminator = nn.SequentialCell(nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),nn.LeakyReLU(0.2),nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),)self.adv_layer = nn.Sigmoid()def construct(self, x):out = self.discriminator(x)out = out.reshape(out.shape[0], -1)return self.adv_layer(out)discriminator = Discriminator()
模型结构输出:

相关文章:
Mindspore框架DCGAN模型实现漫画头像生成|(二)DCGAN模型构建
Mindspore框架DCGAN模型实现漫画头像生成 Mindspore框架DCGAN模型实现漫画头像生成|(一)漫画头像数据集准备Mindspore框架DCGAN模型实现漫画头像生成|(二)DCGAN模型构建Mindspore框架DCGAN模型实现漫画头像生成|(三&a…...
mongo-csharp-driver:MongoDB官方的C#客户端驱动程序!
MongoDB一个开源、高性能、无模式的文档型数据库,在日常项目开发中,运用也是非常广泛。 MongoDB官方也针对各门编程语言,都推出相应的客户端驱动程序,下面一起了解下C#版本。 01 项目简介 mongo-csharp-driver是 MongoDB官方C#…...
网络流量分析>>pcapng文件快速分析有用价值解析
引言 在网络安全和流量管理中,解析网络协议数据包是了解网络行为和检测潜在威胁的关键步骤。本文介绍了如何使用Python解析和分析TCP、UDP和ICMP协议的数据包,并统计端口的访问次数。本文的示例代码展示了如何处理不同协议的数据包,提取关键…...
【大模型系列篇】Vanna-ai基于检索增强(RAG)的sql生成框架
简介 Vanna是基于检索增强(RAG)的sql生成框架 Vanna 使用一种称为 LLM(大型语言模型)的生成式人工智能。简而言之,这些模型是在大量数据(包括一堆在线可用的 SQL 查询)上进行训练的,并通过预测响应提示中最…...
【Nacos安装】
这里写目录标题 Nacos安装jar包启动Docker单体Docker集群 Nacos相关配置日志配置数据库配置 Nacos安装 jar包启动 下载jar包 在官方github,根据需求选择相应的版本下载。 解压 tar -zxvf nacos-server-2.4.0.1.tar.gz或者解压到指定目录 tar -zxvf nacos-serv…...
js、ts、argular、nodejs学习心得
工作中需要前端argular开发桌面程序,后端用nodejs开发服务器,商用软件架构...
【Unity】RPG2D龙城纷争(十八)平衡模拟器
更新日期:2024年7月31日。 项目源码:第五章发布(正式开始游戏逻辑的章节) 索引 简介一、BalanceSimulator 类二、RoleAgent 角色代理类三、绘制代理角色四、模拟攻击简介 平衡模拟器用于实时模拟测试角色属性以及要诀属性的数值,以寻找数值设计的平衡性。 介于运行正式游…...
java.lang.IllegalStateException: Duplicate key InventoryDetailDO
以下总结自以下链接 Java8 Duplicate key 异常解决-CSDN博客 原因:由于我们使用了jdk8的新特性中的stream流,将list转换为map集合,但是原来的list集合中存在重复的值,我们不知道如何进行取舍,所以报错 解决方式&…...
Python使用selenium访问网页完成登录——装饰器重试机制汇总
文章目录 示例一:常见装饰器编写重试机制示例二:使用类实现装饰器示例三:使用函数装饰器并返回闭包示例四:使用 wrapt 模块 示例一:常见装饰器编写重试机制 示例代码 import time import traceback import logging from typing import Call…...
“微软蓝屏”事件引发的深度思考:网络安全与系统稳定性的挑战与应对
“微软蓝屏”事件暴露了网络安全哪些问题? 近日,一次由微软视窗系统软件更新引发的全球性“微软蓝屏”事件,不仅成为科技领域的热点新闻,更是一次对全球IT基础设施韧性与安全性的深刻检验。这次事件,源于美国电脑安全…...
2024.07纪念一 debezium : spring-boot结合debezium
使用前提: 一、mysql开启了logibin 在mysql的安装路径下的my.ini中 【mysqlid】下 添加 log-binmysql-bin # 开启 binlog binlog-formatROW # 选择 ROW 模式 server_id1 # 配置 MySQL replaction 需要定义,不要和 canal 的 slaveId 重复 参考gitee的项目…...
mysql怎么查询json里面的字段
mysql怎么查询json里面的字段: 要在 MySQL 数据库中查询 JSON 字段中的 city 值,你可以使用 MySQL 提供的 JSON 函数。假设表名是 your_table,包含一个名为 json_column 的 JSON 字段。 以下是一个查询示例,展示如何从 json_colu…...
C++ 右值 左值引用
一.什么是左值引用 右值引用 1.左值引用 左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址可以对它赋值。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左…...
「JavaEE」Spring IoC 1:Bean 的存储
🎇个人主页 🎇所属专栏:Spring 🎇欢迎点赞收藏加关注哦! IoC 简介 IoC 全称 Inversion of Control,即控制反转 控制反转是指控制权反转:获得依赖对象的过程被反转了 传统开发模式中&…...
springBoot快速搭建WebSocket
添加依赖 在pom.xml中加入WebSocket相关依赖: <dependencies><!-- websocket --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency>…...
掌控授权的艺术:Laravel自定义策略模式深度解析
掌控授权的艺术:Laravel自定义策略模式深度解析 在现代Web应用开发中,权限管理是核心功能之一。Laravel框架通过其策略模式提供了一种优雅的方式来处理授权问题。然而,随着应用的复杂性增加,内置的策略可能不足以满足所有需求。这…...
Git操作指令(随时更新)
Git操作指令 一、安装git 1、设置配置信息: # global全局配置 git config --global user.name "Your username" git config --global user.email "Your email"# 显示颜色 git config --global color.ui true# 配置别名,各种指令都…...
SpringSecurity自定义登录方式
自定义登录: 定义Token定义Filter定义Provider配置类中定义登录的接口 自定义AuthenticationToken public class EmailAuthenticationToken extends UsernamePasswordAuthenticationToken{public EmailAuthenticationToken(Object principal, Object credentials) …...
黑神话悟空是什么游戏 黑神话悟空配置要求 黑神话悟空好玩吗值得买吗 黑神话悟空苹果电脑可以玩吗
《黑神话:悟空》的类型定义是一款单机动作角色扮演游戏,但实际体验后会发现,游戏在很多设计上采用了「魂like」作品的常见元素。根据个人上手试玩,《黑神话:悟空》的推进节奏比较接近魂类游戏,Boss战也更像…...
深入浅出消息队列----【延迟消息的实现原理】
深入浅出消息队列----【延迟消息的实现原理】 粗说 RocketMQ 的设计细说 RocketMQ 的设计这样实现是否有什么问题? 本文仅是文章笔记,整理了原文章中重要的知识点、记录了个人的看法 文章来源:编程导航-鱼皮【yes哥深入浅出消息队列专栏】 粗…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
