当前位置: 首页 > news >正文

吴恩达机器学习C1W2Lab05-使用Scikit-Learn进行线性回归

前言

有一个开源的、商业上可用的机器学习工具包,叫做scikit-learn。这个工具包包含了你将在本课程中使用的许多算法的实现。

目标

在本实验中,你将:

  • 利用scikit-learn实现使用梯度下降的线性回归

工具

您将使用scikit-learn中的函数以及matplotlib和NumPy。

import numpy as np
np.set_printoptions(precision=2)
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.preprocessing import StandardScaler
from lab_utils_multi import  load_house_data
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'; 
plt.style.use('./deeplearning.mplstyle')

注意点

可能会出现报错 No module named ‘sklearn’
这是因为当前环境下未安装scikit-learn
在这里插入图片描述【解决办法】:在cmd中输入

pip install scikit-learn

梯度下降

Scikit-learn有一个梯度下降回归模型sklearn.linear_model.SGDRegressor。与之前的梯度下降实现一样,该模型在规范化输入时表现最好。standardscaler将像之前的实验一样执行z-score归一化。这里它被称为“标准分数”。

加载数据集

X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']

缩放/规范化训练数据

scaler = StandardScaler()
X_norm = scaler.fit_transform(X_train)
print(f"Peak to Peak range by column in Raw        X:{np.ptp(X_train,axis=0)}")   
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X_norm,axis=0)}")

创建并拟合回归模型

sgdr = SGDRegressor(max_iter=1000)
sgdr.fit(X_norm, y_train)
print(sgdr)
print(f"number of iterations completed: {sgdr.n_iter_}, number of weight updates: {sgdr.t_}")

视图参数

注意,参数与规范化的输入数据相关联。拟合参数与之前使用该数据的实验室中发现的非常接近。

b_norm = sgdr.intercept_
w_norm = sgdr.coef_
print(f"model parameters:                   w: {w_norm}, b:{b_norm}")
print(f"model parameters from previous lab: w: [110.56 -21.27 -32.71 -37.97], b: 363.16")

做出预测

预测训练数据的目标。使用’ predict '例程并使用 w w w b b b进行计算。

# make a prediction using sgdr.predict()
y_pred_sgd = sgdr.predict(X_norm)
# make a prediction using w,b. 
y_pred = np.dot(X_norm, w_norm) + b_norm  
print(f"prediction using np.dot() and sgdr.predict match: {(y_pred == y_pred_sgd).all()}")print(f"Prediction on training set:\n{y_pred[:4]}" )
print(f"Target values \n{y_train[:4]}")

绘制结果

让我们绘制预测值与目标值的对比图。

# plot predictions and targets vs original features    
fig,ax=plt.subplots(1,4,figsize=(12,3),sharey=True)
for i in range(len(ax)):ax[i].scatter(X_train[:,i],y_train, label = 'target')ax[i].set_xlabel(X_features[i])ax[i].scatter(X_train[:,i],y_pred,color=dlorange, label = 'predict')
ax[0].set_ylabel("Price"); ax[0].legend();
fig.suptitle("target versus prediction using z-score normalized model")
plt.show()

祝贺

在这个实验中,你:
-使用开源机器学习工具包scikit-learn
-实现线性回归使用梯度下降和特征归一化的工具包

相关文章:

吴恩达机器学习C1W2Lab05-使用Scikit-Learn进行线性回归

前言 有一个开源的、商业上可用的机器学习工具包,叫做scikit-learn。这个工具包包含了你将在本课程中使用的许多算法的实现。 目标 在本实验中,你将: 利用scikit-learn实现使用梯度下降的线性回归 工具 您将使用scikit-learn中的函数以及matplotli…...

springboot集成thymeleaf实战

引言 笔者最近接到一个打印标签的需求,由于之前没有做过类似的功能,所以这也是一次学习探索的机会了,打印的效果图如下: 这个最终的打印是放在58mm*58mm的小标签纸上,条形码就是下面的35165165qweqweqe序列号生成的&…...

SpringBoot+Vue+kkFileView实现文档管理(文档上传、下载、在线预览)

场景 SpringBootVueOpenOffice实现文档管理(文档上传、下载、在线预览): SpringBootVueOpenOffice实现文档管理(文档上传、下载、在线预览)_霸道流氓气质的博客-CSDN博客_vue openoffice 上面在使用OpenOffice实现doc、excel、ppt等文档的管理和预览。 除此之外…...

从代码层面熟悉UniAD,开始学习了解端到端整体架构

0. 简介 最近端到端已经是越来越火了,以UniAD为代表的很多工作不断地在不断刷新端到端的指标,比如最近SparseDrive又重新刷新了所有任务的指标。在端到端火热起来之前,成熟的模块化自动驾驶系统被分解为不同的独立任务,例如感知、…...

微信小程序-选中文本时选中checkbox

1.使用labe嵌套住checkbox标签 <label class"label-box"> <checkbox >匿名提交</checkbox> </label>2.使checkbox和label组件在同一行 .label-box{display: flex;align-items: center; }效果图 此时选中文本匿名提交&#xff0c;checkbox…...

[玄机]流量特征分析-蚁剑流量分析

题目网址【玄机】&#xff1a;https://xj.edisec.net/ AntSword&#xff08;蚁剑&#xff09;是一款开源的网络安全工具&#xff0c;常用于网络渗透测试和攻击。它可以远程连接并控制被攻击计算机&#xff0c;执行命令、上传下载文件等操作。 蚁剑与网站进行数据交互的过程中&a…...

2-51 基于matlab的IFP_FCM(Improved fuzzy partitions-FCM)

基于matlab的IFP_FCM&#xff08;Improved fuzzy partitions-FCM&#xff09;&#xff0c;改进型FCM(模糊C均值)聚类算法,解决了FCM算法对初始值设定较为敏感、训练速度慢、在迭代时容易陷入局部极小的问题。并附带了Box和Jenkins煤气炉数据模型辨识实例。程序已调通&#xff0…...

Java人力资源招聘社会校招类型招聘小程序

✨&#x1f4bc;【职场新风尚&#xff01;解锁人力资源招聘新神器&#xff1a;社会校招类型招聘小程序】✨ &#x1f393;【校招新体验&#xff0c;一键触达梦想企业】&#x1f393; 还在为错过校园宣讲会而懊恼&#xff1f;别怕&#xff0c;社会校招类型招聘小程序来救场&am…...

oracle表、表空间使用空间

文章目录 一、Oracle查询表空间占用情况二、Oracle查询表占用的空间三、Oracle查询表空间使用情况四、Oracle查询每张表占用空间五、表空间大小 TOC 一、Oracle查询表空间占用情况 oracle日常工作中查看表占用空间大小是数据库管理中的基本操作&#xff1a; SELECT a.tablesp…...

IDEA管理远程仓库Git

1、模拟项目 新建一个文件夹&#xff0c;用来这次演示 用IDEA来打开文件夹 2、创建仓库 在IDEA中给该文件夹创建本地仓库和远程仓库 在菜单栏找到VCS选择Share project on Gitee 在弹窗中输入描述信息 接下来会出现以下弹窗 点击ADD后&#xff0c;在gitee上会创建远程仓库 …...

【数据结构】Java实现二叉搜索树

二叉搜索树的基本性质 二叉搜索树&#xff08;Binary Search Tree, BST&#xff09;是一种特殊的二叉树&#xff0c;它具有以下特征&#xff1a; 1. 节点结构&#xff1a;每个节点包含一个键&#xff08;key&#xff09;和值&#xff08;value&#xff09;&#xff0c;以及指…...

钉钉小程序如何通过setdate重置对象

在钉钉小程序中&#xff0c;通过setData方法来重置对象&#xff08;即更新对象中的数据&#xff09;是一个常见的操作。然而&#xff0c;需要注意的是&#xff0c;钉钉小程序&#xff08;或任何小程序平台&#xff09;的setData方法在处理对象更新时有一些特定的规则和最佳实践…...

DjangoRF-10-过滤-django-filter

1、安装pip install django-filter https://pypi.org/ 搜索django-filter基础用法 2、进行配置 3、进行内容调试。 4、如果碰到没有关联的字段。interfaces和projects没有直接关联字段&#xff0c;但是interface和module有关联&#xff0c;而且module和projects关联&#x…...

Android SurfaceFlinger——GraphicBuffer的生成(三十二)

通过前面的学习我们知道,在 SurfaceFlinger 中使用的生产者/消费者模型,Surface 做为生产者一方存在如下两个比较重要的函数: dequeueBuffer:获取一个缓冲区(GraphicBuffer),也就是 GraphicBuffer 生成。queueBuffer :把缓冲区(GraphicBuffer)放入缓冲队列中。 …...

<数据集>棉花识别数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;13765张 标注数量(xml文件个数)&#xff1a;13765 标注数量(txt文件个数)&#xff1a;13765 标注类别数&#xff1a;4 标注类别名称&#xff1a;[Partially opened, Fully opened boll, Defected boll, Flower] 序…...

[240730] OpenAI 推出基于规则的奖励机制 (RBR) 提升模型安全性 | 英特尔承认其13、14代 CPU 存在问题

目录 OpenAI 推出基于规则的奖励机制&#xff08;RBR&#xff09;提升模型安全性英特尔承认其 13、14代 CPU 存在问题 OpenAI 推出基于规则的奖励机制&#xff08;RBR&#xff09;提升模型安全性 为了解决传统强化学习中依赖人工反馈的低效问题&#xff0c;OpenAI 开发了基于规…...

【JavaScript】展开运算符详解

文章目录 一、展开运算符的基本用法1. 展开数组2. 展开对象 二、展开运算符的实际应用1. 合并数组2. 数组的浅拷贝3. 合并对象4. 对象的浅拷贝5. 更新对象属性 三、展开运算符的高级用法1. 在函数参数中使用2. 嵌套数组的展开3. 深拷贝对象4. 动态属性名 四、注意事项和最佳实践…...

麒麟V10系统统一认证子系统国际化

在适配麒麟V10系统统一认证子系统国际化过程中&#xff0c; 遇到了很多的问题&#xff0c;关键是麒麟官方的文档对这部分也是粗略带过&#xff0c;遇到的问题有: &#xff08;1&#xff09;xgettext无法提取C源文件中目标待翻译的字符串。 &#xff08;2&#xff09;使用msgf…...

C语言进阶 13. 文件

C语言进阶 13. 文件 文章目录 C语言进阶 13. 文件13.1. 格式化输入输出13.2. 文件输入输出13.3. 二进制文件13.4. 按位运算13.5. 移位运算13.6. 位运算例子13.7. 位段 13.1. 格式化输入输出 格式化输入输出: printf %[flags][width][.prec][hlL]type scanf %[flags]type %[fl…...

LinuxCentos中ELK日志分析系统的部署(详细教程8K字)附图片

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f427;Linux基础知识(初学)&#xff1a;点击&#xff01; &#x1f427;Linux高级管理防护和群集专栏&#xff1a;点击&#xff01; &#x1f510;Linux中firewalld防火墙&#xff1a;点击&#xff01; ⏰️创作…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...