Python酷库之旅-第三方库Pandas(056)
目录
一、用法精讲
211、pandas.Series.truncate方法
211-1、语法
211-2、参数
211-3、功能
211-4、返回值
211-5、说明
211-6、用法
211-6-1、数据准备
211-6-2、代码示例
211-6-3、结果输出
212、pandas.Series.where方法
212-1、语法
212-2、参数
212-3、功能
212-4、返回值
212-5、说明
212-6、用法
212-6-1、数据准备
212-6-2、代码示例
212-6-3、结果输出
213、pandas.Series.mask方法
213-1、语法
213-2、参数
213-3、功能
213-4、返回值
213-5、说明
213-6、用法
213-6-1、数据准备
213-6-2、代码示例
213-6-3、结果输出
214、pandas.Series.add_prefix方法
214-1、语法
214-2、参数
214-3、功能
214-4、返回值
214-5、说明
214-6、用法
214-6-1、数据准备
214-6-2、代码示例
214-6-3、结果输出
215、pandas.Series.add_suffix方法
215-1、语法
215-2、参数
215-3、功能
215-4、返回值
215-5、说明
215-6、用法
215-6-1、数据准备
215-6-2、代码示例
215-6-3、结果输出
二、推荐阅读
1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页
一、用法精讲
211、pandas.Series.truncate方法
211-1、语法
# 211、pandas.Series.truncate方法
pandas.Series.truncate(before=None, after=None, axis=None, copy=None)
Truncate a Series or DataFrame before and after some index value.This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.Parameters:
beforedate, str, int
Truncate all rows before this index value.afterdate, str, int
Truncate all rows after this index value.axis{0 or ‘index’, 1 or ‘columns’}, optional
Axis to truncate. Truncates the index (rows) by default. For Series this parameter is unused and defaults to 0.copybool, default is True,
Return a copy of the truncated section.NoteThe copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas.You can already get the future behavior and improvements through enabling copy on write pd.options.mode.copy_on_write = TrueReturns:
type of caller
The truncated Series or DataFrame.
211-2、参数
211-2-1、before(可选,默认值为None):截取的起始位置,包含此索引值。如果未指定,则从Series的第一个索引开始。
211-2-2、after(可选,默认值为None):截取的结束位置,包含此索引值。如果未指定,则截取到Series的最后一个索引。
211-2-3、axis(可选,默认值为None):未使用,保留参数。
211-2-4、copy(可选,默认值为None):是否复制返回的数据。如果为False,则返回的Series是原始数据的视图,而不是副本。
211-3、功能
用于截取Series对象的一部分数据,通常用于在时间序列数据或带有特定索引的数据集中选取特定范围的数据。
211-4、返回值
返回一个pandas.Series对象,包含在before和after参数指定的范围内的元素。
211-5、说明
无
211-6、用法
211-6-1、数据准备
无
211-6-2、代码示例
# 211、pandas.Series.truncate方法
# 211-1、截取指定范围的数据
import pandas as pd
s = pd.Series([10, 20, 30, 40, 50, 60, 70, 80], index=[1, 2, 3, 4, 5, 6, 7, 8])
result = s.truncate(before=3, after=6)
print(result, end='\n\n')# 211-2、截取从索引4到最后的数据
import pandas as pd
s = pd.Series([10, 20, 30, 40, 50, 60, 70, 80], index=[1, 2, 3, 4, 5, 6, 7, 8])
result = s.truncate(before=4)
print(result, end='\n\n')# 211-3、截取从开头到索引5的数据
import pandas as pd
s = pd.Series([10, 20, 30, 40, 50, 60, 70, 80], index=[1, 2, 3, 4, 5, 6, 7, 8])
result = s.truncate(after=5)
print(result)
211-6-3、结果输出
# 211、pandas.Series.truncate方法
# 211-1、截取指定范围的数据
# 3 30
# 4 40
# 5 50
# 6 60
# dtype: int64# 211-2、截取从索引4到最后的数据
# 4 40
# 5 50
# 6 60
# 7 70
# 8 80
# dtype: int64# 211-3、截取从开头到索引5的数据
# 1 10
# 2 20
# 3 30
# 4 40
# 5 50
# dtype: int64
212、pandas.Series.where方法
212-1、语法
# 212、pandas.Series.where方法
pandas.Series.where(cond, other=nan, *, inplace=False, axis=None, level=None)
Replace values where the condition is False.Parameters:
cond
bool Series/DataFrame, array-like, or callable
Where cond is True, keep the original value. Where False, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).other
scalar, Series/DataFrame, or callable
Entries where cond is False are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).inplace
bool, default False
Whether to perform the operation in place on the data.axis
int, default None
Alignment axis if needed. For Series this parameter is unused and defaults to 0.level
int, default None
Alignment level if needed.Returns:
Same type as caller or None if
inplace=True.
212-2、参数
212-2-1、cond(必须):布尔型数组,条件表达式或Series,它用于指定要保留的元素。当条件为True时保留原值,为False时替换为other的值。
212-2-2、other(可选,默认值为nan):用来替换不满足条件的元素的值,默认情况下,这些元素会被替换为NaN。
212-2-3、inplace(可选,默认值为False):如果为True,则在原地修改Series对象,而不是返回修改后的副本。
212-2-4、axis(可选,默认值为None):未使用,保留参数。
212-2-5、level(可选,默认值为None):如果Series是多层索引的,可以指定操作的索引层次。
212-3、功能
用于基于条件对Series数据进行筛选和替换,它根据给定的布尔条件保留或替换Series中的值。
212-4、返回值
返回一个pandas.Series对象,其中原来的数据根据cond条件被筛选和替换。
212-5、说明
无
212-6、用法
212-6-1、数据准备
无
212-6-2、代码示例
# 212、pandas.Series.where方法
# 212-1、基本用法
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
result = s.where(s > 2)
print(result, end='\n\n')# 212-2、指定替换值
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
result = s.where(s > 2, other=-1)
print(result, end='\n\n')# 212-3、使用布尔条件
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
result = s.where(s % 2 == 0, other='odd')
print(result, end='\n\n')# 212-4、原地修改
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
s.where(s > 2, other=-1, inplace=True)
print(s)
212-6-3、结果输出
# 212、pandas.Series.where方法
# 212-1、基本用法
# 0 NaN
# 1 NaN
# 2 3.0
# 3 4.0
# 4 5.0
# dtype: float64# 212-2、指定替换值
# 0 -1
# 1 -1
# 2 3
# 3 4
# 4 5
# dtype: int64# 212-3、使用布尔条件
# 0 odd
# 1 2
# 2 odd
# 3 4
# 4 odd
# dtype: object# 212-4、原地修改
# 0 -1
# 1 -1
# 2 3
# 3 4
# 4 5
# dtype: int64
213、pandas.Series.mask方法
213-1、语法
# 213、pandas.Series.mask方法
pandas.Series.mask(cond, other=_NoDefault.no_default, *, inplace=False, axis=None, level=None)
Replace values where the condition is True.Parameters:
cond
bool Series/DataFrame, array-like, or callable
Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).other
scalar, Series/DataFrame, or callable
Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).inplace
bool, default False
Whether to perform the operation in place on the data.axis
int, default None
Alignment axis if needed. For Series this parameter is unused and defaults to 0.level
int, default None
Alignment level if needed.Returns:
Same type as caller or None if
inplace=True.
213-2、参数
213-2-1、cond(必须):布尔型数组,条件表达式或Series,它用于指定要替换的元素。当条件为True时替换为other的值,为False时保留原值。
213-2-2、other(可选):用来替换满足条件的元素的值,默认情况下,这些元素会被替换为NaN。
213-2-3、inplace(可选,默认值为False):如果为True,则在原地修改Series对象,而不是返回修改后的副本。
213-2-4、axis(可选,默认值为None):未使用,保留参数。
213-2-5、level(可选,默认值为None):如果Series是多层索引的,可以指定操作的索引层次。
213-3、功能
用于替换Series数据中的元素。如果满足指定的条件(cond),则将这些元素替换为other的值;否则,保留原值。
213-4、返回值
返回一个pandas.Series对象,其中原来的数据根据cond条件被筛选和替换。
213-5、说明
无
213-6、用法
213-6-1、数据准备
无
213-6-2、代码示例
# 213、pandas.Series.mask方法
# 213-1、基本用法
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
result = s.mask(s > 2)
print(result, end='\n\n')# 213-2、指定替换值
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
result = s.mask(s > 2, other=-1)
print(result, end='\n\n')# 213-3、使用布尔条件
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
result = s.mask(s % 2 == 0, other='even')
print(result, end='\n\n')# 213-4、原地修改
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
s.mask(s > 2, other=-1, inplace=True)
print(s)
213-6-3、结果输出
# 213、pandas.Series.mask方法
# 213-1、基本用法
# 0 1.0
# 1 2.0
# 2 NaN
# 3 NaN
# 4 NaN
# dtype: float64# 213-2、指定替换值
# 0 1
# 1 2
# 2 -1
# 3 -1
# 4 -1
# dtype: int64# 213-3、使用布尔条件
# 0 1
# 1 even
# 2 3
# 3 even
# 4 5
# dtype: object# 213-4、原地修改
# 0 1
# 1 2
# 2 -1
# 3 -1
# 4 -1
# dtype: int64
214、pandas.Series.add_prefix方法
214-1、语法
# 214、pandas.Series.add_prefix方法
pandas.Series.add_prefix(prefix, axis=None)
Prefix labels with string prefix.For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.Parameters:
prefixstr
The string to add before each label.axis{0 or ‘index’, 1 or ‘columns’, None}, default None
Axis to add prefix onNew in version 2.0.0.Returns:
Series or DataFrame
New Series or DataFrame with updated labels.
214-2、参数
214-2-1、prefix(必须):字符串类型,表示要添加到索引标签前的前缀。
214-2-2、axis(可选,默认值为None):虽然存在这个参数,但在Series中没有实际意义,因为Series没有轴的概念。
214-3、功能
通过为Series的索引标签添加一个指定的前缀,返回一个新的Series对象。
214-4、返回值
返回一个pandas.Series对象,其索引标签被添加了指定的前缀。
214-5、说明
无
214-6、用法
214-6-1、数据准备
无
214-6-2、代码示例
# 214、pandas.Series.add_prefix方法
import pandas as pd
s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
result = s.add_prefix('item_')
print(result)
214-6-3、结果输出
# 214、pandas.Series.add_prefix方法
# item_a 1
# item_b 2
# item_c 3
# dtype: int64
215、pandas.Series.add_suffix方法
215-1、语法
# 215、pandas.Series.add_suffix方法
pandas.Series.add_suffix(suffix, axis=None)
Suffix labels with string suffix.For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.Parameters:
suffixstr
The string to add after each label.axis{0 or ‘index’, 1 or ‘columns’, None}, default None
Axis to add suffix onNew in version 2.0.0.Returns:
Series or DataFrame
New Series or DataFrame with updated labels.
215-2、参数
215-2-1、suffix(必须):字符串类型,表示要添加到索引标签后的后缀。
215-2-2、axis(可选,默认值为None):虽然存在这个参数,但在Series中没有实际意义,因为Series没有轴的概念。
215-3、功能
用于为Series的索引标签添加一个后缀,和add_prefix类似,axis参数在Series中没有实际意义,因为Series是一维的。
215-4、返回值
返回一个pandas.Series对象,其索引标签被添加了指定的后缀。
215-5、说明
无
215-6、用法
215-6-1、数据准备
无
215-6-2、代码示例
# 215、pandas.Series.add_suffix方法
import pandas as pd
s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
result = s.add_suffix('_item')
print(result)
215-6-3、结果输出
# 215、pandas.Series.add_suffix方法
# a_item 1
# b_item 2
# c_item 3
# dtype: int64
二、推荐阅读
1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页
相关文章:

Python酷库之旅-第三方库Pandas(056)
目录 一、用法精讲 211、pandas.Series.truncate方法 211-1、语法 211-2、参数 211-3、功能 211-4、返回值 211-5、说明 211-6、用法 211-6-1、数据准备 211-6-2、代码示例 211-6-3、结果输出 212、pandas.Series.where方法 212-1、语法 212-2、参数 212-3、功能…...

ZBrush入门使用介绍——4、笔刷选项说明
大家好,我是阿赵。 这次来看看ZBrush的笔刷的选项用法。 一、选择笔刷 点击笔刷,可以打开笔刷选择面板。 在最上面的Quick Pick,有最近使用过的笔刷,可以快速的选择。下面有很多可以选择的笔刷。但由于笔刷太多,…...

Java每日一练,技术成长不间断
目录 题目1.下列关于继承的哪项叙述是正确的?2.Java的跨平台特性是指它的源代码可以在多个平台运行。()3.以下 _____ 不是 Object 类的方法4.以下代码:5.下面哪个流类不属于面向字符的流()总结 题目 选自牛…...

传知代码-上下位关系自动检测方法(论文复现)
代码以及视频讲解 本文所涉及所有资源均在传知代码平台可获取 概述 本文复现论文 Hearst patterns revisited: Automatic hypernym detection from large text corpora[1] 提出的文本中上位词检测方法。 在自然语言处理中,上下位关系(Is-a Relations…...

从零开始的MicroPython(二) GPIO及代码应用
上一篇:http://t.csdnimg.cn/mg2Qt 文章目录 ESP32(NodeMCU-32S)简介引脚注意事项 类与对象的概念MicroPython的GPIO使用文档解释machine.PinPin.irq 点灯 ESP32(NodeMCU-32S) 简介 NodeMCU-32S 是安信可基于 ESP32-32S 模组所设计的核心开发板。该开发板延续了 N…...

嵌入式day15
数组指针 能够指向整个数组 一维数组: &a,考察a的数据类型 int(*p)[10]:表示一个指向长度为10的一维整型数组的指针 二维数组: 指向函数的指针 函数的函数名,即为函数的入口地址&#x…...

【电池管理系统(BMS)-01】 | 电池管理系统简介,动力电池和储能电池区别
🎩 欢迎来到技术探索的奇幻世界👨💻 📜 个人主页:一伦明悦-CSDN博客 ✍🏻 作者简介: C软件开发、Python机器学习爱好者 🗣️ 互动与支持:💬评论 &…...
C++ STL partial_sum 用法
一:功能 计算部分和,即遍历序列中每个元素,计算前 i 个元素的累加和,并将结果存在 i 的位置上。 二:用法 #include <iostream> #include <vector> #include <numeric>int main() {std::vector<…...

诚宜开张圣听不应妄自菲薄
拾人牙慧孜孜不倦 青山依旧在几度夕阳红朝闻道夕死可矣 青山依旧在几度夕阳红 安能以血补天我计不成乃天命也臣本布衣躬耕南阳大丈夫宁死不辱尔要试我宝剑是否锋利吗又待怎样休教天下人负我竖子不足与谋皇天不佑天下英雄唯使君与操尔青光殷殷其灿如炎备不量力欲申大义于天下我…...

Vue3 加载条(LoadingBar)
效果如下图:在线预览 APIs LoadingBar 参数说明类型默认值必传containerClass加载条容器的类名stringundefinedfalsecontainerStyle加载条容器的样式CSSProperties{}falseloadingBarSize加载条大小,单位 pxnumber2falsecolorLoading加载中颜色string‘…...

《CSS创意项目实战指南》:点亮网页,从实战中掌握CSS的无限创意
CSS创意项目实战指南 在数字时代,网页不仅是信息的载体,更是艺术与技术的融合体。通过CSS,你可以将平凡的网页转变为引人入胜的视觉盛宴,让用户体验跃升至全新高度。《CSS创意项目实战指南》正是这样一本引领你探索CSS无限可能的…...

[FBCTF2019]RCEService (PCRE回溯绕过和%a0换行绕过)
json格式输入ls出现index.php 这道题原本是给了源码的,BUUCTF没给 源码: <?phpputenv(PATH/home/rceservice/jail);if (isset($_REQUEST[cmd])) {$json $_REQUEST[cmd];if (!is_string($json)) {echo Hacking attempt detected<br/><br/…...

vue3后台管理系统 vue3+vite+pinia+element-plus+axios上
前言 项目安装与启动 使用vite作为项目脚手架 # pnpm pnpm create vite my-vue-app --template vue安装相应依赖 # sass pnpm i sass # vue-router pnpm i vue-router # element-plus pnpm i element-plus # element-plus/icon pnpm i element-plus/icons-vue安装element-…...

Mysql的事务隔离级别实现原理
一、事务隔离级别 mysql支持四种事务隔离级别: 读未提交:一个事务可以读取到另一个事务还未提交的数据;读已提交:一个事务可以读取到另一个事务已经提交的数据;可重复读:同一个事务中,无论读取…...

计算机体系结构:缓存一致性ESI
集中式缓存处理器结构(SMP) 不同核访问存储器时间相同。 分布式缓存处理器结构(NUMA) 共享存储器按模块分散在各处理器附近,处理器访问本地存储器和远程存储器的延迟不同,共享数据可进入处理器私有高速缓存…...

log4j2漏洞练习(未完成)
log4j2 是Apache的一个java日志框架,我们借助它进行日志相关操作管理,然而在2021年末log4j2爆出了远程代码执行漏洞,属于严重等级的漏洞。apache log4j通过定义每一条日志信息的级别能够更加细致地控制日志生成地过程,受影响的版本…...
常见网络攻击方法原理、应用场景和防御方法(一)
目录 1、SQL注入(SQL Injection)原理应用场景防御方法 2、跨站脚本攻击(XSS,Cross-Site Scripting)原理应用场景防御方法 3、跨站请求伪造(CSRF,Cross-Site Request Forgery)原理应用场景防御方法 4、文件上传漏洞原理应用场景防御方法 5、远程代码执行(…...

【leetcode十分钟】覆盖所有点的最少矩形数目(C++思路详解)
思路详解: 0. 题目情境并未限制矩形高度,故矩形数目的判断只和点的横坐标有关 1. 为了不重不漏地考虑到所有点,故笔者选择首先将二维数组中的点按横坐标的大小排序 //说明:本来笔者以为需要自定义sort排序,后来发现…...

【Vue3】默认插槽
【Vue3】默认插槽 背景简介开发环境开发步骤及源码 背景 随着年龄的增长,很多曾经烂熟于心的技术原理已被岁月摩擦得愈发模糊起来,技术出身的人总是很难放下一些执念,遂将这些知识整理成文,以纪念曾经努力学习奋斗的日子。本文内…...

华清day4 24-7-31
1> 使用父子进程完成两个文件的拷贝 父进程拷贝前一半内容,子进程拷贝后一半内容 子进程结束后退出,父进程回收子进程的资源 /* 使用父子进程完成两个文件的拷贝父进程拷贝前一半内容,子进程拷贝后一半内容 子进程结束后退出ÿ…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...

实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...