当前位置: 首页 > news >正文

嵌入式C++、ROS 、OpenCV、SLAM 算法和路径规划算法:自主导航的移动机器人流程设计(代码示例)

在当今科技迅速发展的背景下,嵌入式自主移动机器人以其广泛的应用前景和技术挑战吸引了越来越多的研究者和开发者。本文将详细介绍一个嵌入式自主移动机器人项目,涵盖其硬件与软件系统设计、代码实现及项目总结,并提供相关参考文献。

项目概述

本项目旨在设计和实现一个能够自主导航的移动机器人,具备环境感知、路径规划和避障能力。该机器人基于嵌入式系统构建,使用多种传感器来感知环境并通过复杂的算法进行决策。项目的核心目标是实现一个具有良好性能和可扩展性的机器人系统。

系统设计

硬件部分

1.1 嵌入式控制器
  • ESP32: 功能强大的Wi-Fi和蓝牙模块,适合进行数据传输和控制。它能够与其他设备进行无线通信。
  • Raspberry Pi: 作为主控制单元,运行复杂的算法和数据处理,支持Python编程,便于实现高层逻辑控制。
  • Arduino: 适合处理传感器数据和控制电机,执行简单的实时任务。
1.2 传感器
  • 激光雷达 (LiDAR): 采用RPLIDAR A1或A2,用于高精度的环境建模和障碍物检测。
  • 超声波传感器: 采用HC-SR04,适合做短距离的障碍物检测,提供实时的距离信息。
  • 红外传感器: 用于检测接近物体,辅助机器人进行简单的避障任务。
1.3 摄像头
  • USB摄像头或Raspberry Pi摄像头模块: 用于捕捉环境图像,进行视觉处理。
  • 深度摄像头: 如Intel RealSense,获取深度信息,增强环境感知能力。
1.4 运动控制
  • 电机驱动模块: 采用L298N或TB6612FNG,控制电机的转动,实现精准的运动控制。
  • 轮子和底盘: 选择合适的底盘(如四轮或差速驱动),以及电机(如直流电机或步进电机)。

软件部分

2.1 操作系统
  • Raspberry Pi OS: 在Raspberry Pi上运行的Linux系统,适合进行复杂的计算和控制。
  • Arduino IDE: 用于Arduino的编程和调试。
2.2 编程语言
  • Python: 用于数据处理、图像处理和高层逻辑控制,易于开发和调试。
  • C/C++: 在Arduino和低层嵌入式系统中使用,适合实时控制任务。
2.3 软件库和框架
  • ROS (Robot Operating System): 提供一套强大的工具和库,支持机器人开发,特别是在Raspberry Pi上,包含导航、视觉和传感器融合的功能。
  • OpenCV: 用于图像处理和计算机视觉任务,如对象识别和路径规划。
  • PCL (Point Cloud Library): 用于处理激光雷达数据,进行三维重建和环境建模。
2.4 算法
  • SLAM (Simultaneous Localization and Mapping): 在未知环境中同时进行定位和地图构建,常用算法有GMapping、Hector SLAM等。
  • 路径规划算法:
    • A*算法: 用于找到最优路径。
    • Dijkstra算法: 适合在图中寻找最短路径。
    • RRT (Rapidly-exploring Random Tree): 适合高维空间的路径规划。
  • 避障算法: 基于传感器数据的实时避障算法,如动态窗算法(Dynamic Window Approach)或VTOL(Virtual Target Orientation Control)。

系统设计图

代码实现

3.1 代码结构

本项目的代码结构如下:

/robot_project
│
├── /src
│   ├── main.py       # 主程序
│   ├── sensor.py     # 传感器数据处理
│   ├── motor.py      # 电机控制
│   ├── slam.py       # SLAM算法实现
│   └── navigation.py  # 路径规划算法实现
│
├── /include
│   └── config.h      # 配置文件
│
└── requirements.txt  # Python依赖库

3.2 代码讲解

3.2.1 主程序 (main.py)
import rospy
from sensor import SensorHandler
from motor import MotorController
from slam import SLAM
from navigation import PathPlannerdef main():# 初始化ROS节点rospy.init_node('robot_controller', anonymous=True)# 创建传感器处理对象sensor_handler = SensorHandler()# 创建电机控制对象motor_controller = MotorController()# 创建SLAM对象slam = SLAM()# 创建路径规划对象path_planner = PathPlanner()while not rospy.is_shutdown():# 获取传感器数据sensor_data = sensor_handler.get_data()# 执行SLAM算法map_data = slam.process(sensor_data)# 进行路径规划path = path_planner.compute_path(map_data)# 控制电机运动motor_controller.move_along_path(path)if __name__ == "__main__":main()

代码讲解:

  • 首先,初始化ROS节点以便与其他节点通信。
  • 创建传感器处理、电机控制、SLAM和路径规划的对象。
  • 在循环中,不断获取传感器数据,进行SLAM处理,计算路径,并控制电机沿着路径移动。
3.2.2 传感器处理 (sensor.py)
import rospy
import randomclass SensorHandler:def __init__(self):# 初始化传感器rospy.loginfo("Initializing sensors...")def get_data(self):# 模拟获取传感器数据distance = random.uniform(0, 10)  # 随机生成距离return {'distance': distance}

代码讲解:

  • SensorHandler类负责初始化传感器并获取传感器数据。
  • get_data方法模拟获取距离数据,这里使用随机数生成距离。
3.2.3 电机控制 (motor.py)
import rospyclass MotorController:def __init__(self):rospy.loginfo("Initializing motor controller...")def move_along_path(self, path):# 模拟沿路径运动rospy.loginfo(f"Moving along path: {path}")

代码讲解:

  • MotorController类用于控制电机运动。
  • move_along_path方法接收路径参数,模拟电机沿路径移动。
3.2.4 SLAM算法 (slam.py)
class SLAM:def __init__(self):# 初始化SLAM参数passdef process(self, sensor_data):# 模拟SLAM处理return {'map': 'simulated_map_data'}

代码讲解:

  • SLAM类初始化SLAM相关参数。
  • process方法处理传感器数据并返回模拟的地图数据。

3.2.5 路径规划 (navigation.py)

class PathPlanner:def __init__(self):# 初始化路径规划参数passdef compute_path(self, map_data):# 模拟路径规划# 假设我们根据地图数据返回一条简单的路径rospy.loginfo(f"Computing path using map data: {map_data}")return ['point1', 'point2', 'point3']  # 返回路径点列表

代码讲解:

  • PathPlanner类用于计算路径。
  • compute_path方法接受地图数据并返回一条简单的路径。这是一个模拟实现,实际应用中会使用复杂的路径规划算法(如A*或Dijkstra算法)。

相关文章:

嵌入式C++、ROS 、OpenCV、SLAM 算法和路径规划算法:自主导航的移动机器人流程设计(代码示例)

在当今科技迅速发展的背景下,嵌入式自主移动机器人以其广泛的应用前景和技术挑战吸引了越来越多的研究者和开发者。本文将详细介绍一个嵌入式自主移动机器人项目,涵盖其硬件与软件系统设计、代码实现及项目总结,并提供相关参考文献。 项目概…...

数据安全堡垒:SQL Server数据库备份验证与测试恢复全攻略

数据安全堡垒:SQL Server数据库备份验证与测试恢复全攻略 在数据库管理中,备份是确保数据安全的关键环节,但仅仅拥有备份是不够的,验证备份的有效性并能够从备份中成功恢复数据同样重要。SQL Server提供了一系列的工具和方法来执…...

嵌入式人工智能(40-基于树莓派4B的水滴传感器和火焰传感器)

虽然这两个传感器水火不容,我还是把他们放到一起了。本文是有线传感器的最后一个部分了。后面如果还有文章介绍有线传感器,也是补充学习其他内容不得已而为之。如果不是,就当我没说,哈哈。 1、水滴传感器 水滴传感器又称雨滴传感…...

EF访问PostgreSql,如何判断jsonb类型的数组是否包含某个数值

下面代码判断OpenUserIds(long[]类型的jsonb)字段,是否包含 8 basequery basequery.Where(m > Microsoft.EntityFrameworkCore.NpgsqlJsonDbFunctionsExtensions.JsonContains(EF.Functions, m.OpenUserIds, new long[] { 8 }));...

Qt 实战(8)控件 | 8.1、QComboBox

文章目录 一、QComboBox1、简介2、功能特性2.1、添加和移除项目2.2、设置和获取当前选中项2.3、模型/视图架构2.4、信号与槽 3、总结 前言: QComboBox 是 Qt 框架中一个非常实用的控件,它允许用户从一个下拉列表中选择一个项目。这个控件广泛应用于需要用…...

模拟算法概览

前言 LeetCode上的模拟算法题目主要考察通过直接模拟问题的实际操作和过程来解决问题。这类题目通常不需要高级的数据结构或复杂的算法,而是通过仔细的逻辑和清晰的步骤逐步解决。 适合解决的问题 模拟算法适合用来解决那些逻辑明确、步骤清晰且可以逐步执行的问…...

uniapp手写滚动选择器

文章目录 效果展示HTML/Template部分&#xff1a;JavaScript部分&#xff1a;CSS部分&#xff1a;完整代码 没有符合项目要求的选择器 就手写了一个 效果展示 实现一个时间选择器的功能&#xff0c;可以选择小时和分钟&#xff1a; HTML/Template部分&#xff1a; <picker…...

智慧医院临床检验管理系统源码(LIS),全套LIS系统源码交付,商业源码,自主版权,支持二次开发

实验室信息系统是集申请、采样、核收、计费、检验、审核、发布、质控、查询、耗材控制等检验科工作为一体的网络管理系统。它的开发和应用将加快检验科管理的统一化、网络化、标准化的进程。一体化设计&#xff0c;与其他系统无缝连接&#xff0c;全程化条码管理。支持危机值管…...

超市是怎样高效完成客流统计与客流分析

随着科技的进步&#xff0c;越来越多的超市开始采用现代化的客流统计系统来优化日常运营和提升顾客体验。本文将探讨超市客流统计面临的难题、客流统计系统的构成及其应用场景&#xff0c;以及系统如何通过高识别率和热力图分析等功能为超市带来实际效益。 一、景区客流统计难题…...

进程地址空间,零基础最最最详解

目录 建议全文阅读&#xff01;&#xff01;&#xff01; 建议全文阅读&#xff01;&#xff01;&#xff01; 建议全文阅读&#xff01;&#xff01;&#xff01; 一、什么是地址空间 1、概念 2、主要组成部分 3、特点和作用 &#xff08;1&#xff09;虚拟化&#xf…...

全面解锁:通过JSP和Ajax实现钉钉签到数据展示及部门筛选功能

要在JSP页面中调用钉钉的签到接口&#xff0c;并将签到数据展示在页面上&#xff0c;同时提供部门筛选功能&#xff0c;你可以按照以下步骤操作&#xff1a; 准备钉钉API&#xff1a; 你需要首先获取钉钉开放平台的API凭证&#xff08;如access_token&#xff09;。请参考钉钉开…...

LLM应用-prompt提示:让大模型总结生成PPT

参考&#xff1a; https://mp.weixin.qq.com/s/frKOjf4hb6yec8LzSmvQ7A 思路&#xff1a;通过大模型生成markdown内容&#xff0c;通过markdown去生成PPT 技术&#xff1a;Marp&#xff08;https://marp.app/&#xff09;这里用的这个工具进行markdown转PPT 1、让大模型生成Ma…...

安全防护软件的必要性:从微软蓝屏事件谈起

最近微软遭遇了的大规模蓝屏事件&#xff0c;让全球很多用户措手不及。这次事件告诉我们&#xff0c;保护我们的电脑和数据&#xff0c;安全防护软件是多么重要。 微软蓝屏事件源于网络安全公司CrowdStrike的技术更新错误&#xff0c;导致全球范围内大量Windows用户系统崩溃&a…...

解开基于大模型的Text2SQL的神秘面纱

你好&#xff0c;我是 shengjk1&#xff0c;多年大厂经验&#xff0c;努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注&#xff01;你会有如下收益&#xff1a; 了解大厂经验拥有和大厂相匹配的技术等 希望看什么&#xff0c;评论或者私信告诉我&#xff01; 文章目录 一…...

对象转化成base64-再转回对象

title: 对象转化成base64,再转回对象 date: 2024-08-01 17:54:02 tags: vue3 对象转为base64 /** 将本地对象转为base64 */ function toBase(str) {// 将对象转换为JSON字符串const jsonString JSON.stringify(str);// 使用encodeURIComponent将JSON字符串转换为UTF-8的百分…...

vue运行或打包报错 “‘node --max-old-space-size=10240“‘ 不是内部或外部命令

"node --max-old-space-size10240" 不是内部或外部命令&#xff0c;也不是可运行的程序 解决办法&#xff1a; 在 node_modules 文件夹搜索 "%_prog%" 替换成 %_prog% (即去掉双引号)...

反爬虫限制:有哪些方法可以保护网络爬虫不被限制?

目前&#xff0c;爬虫已经成为互联网数据获取最主流的方式。但为了保证爬虫顺利采集数据&#xff0c;需要防范网站的反爬虫机制&#xff0c;降低IP被限制的风险&#xff0c;这样才能提高爬虫工作的效率。那么&#xff0c;如何防止网络爬虫被限制呢&#xff1f;下面介绍几种有效…...

『 Linux 』基于阻塞队列的生产者消费者模型

文章目录 生产者-消费者模型概述生产者消费者模型的高效性虚假唤醒信号丢失生产者消费者模型的模拟实现参考代码 生产者-消费者模型概述 生产者消费者模型是一种多线程设计模式,常见于解决多个生产者线程和多个消费者线程之间如何安全有效地共享数据; 该模型中存在三种关系,两个…...

vite+typescript项目 报错:找不到模块“./*.vue”或其相应的类型声明——解决方案

declare module *.vue {import type { DefineComponent } from vueconst vueComponent: DefineComponent<{}, {}, any>export default vueComponent }...

连锁企业组网的优化解决方案

对于连锁企业来说&#xff0c;建立高效的网络组网很重要&#xff0c;因为它直接影响到各分支机构之间的信息共享、管理效率和业务流程的顺畅。一个理想的解决方案需要从多个角度入手&#xff0c;以确保网络的稳定性、安全性和可扩展性。 首先&#xff0c;需要选择合适的网络拓扑…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

目录 &#x1f50d; 若用递归计算每一项&#xff0c;会发生什么&#xff1f; Horners Rule&#xff08;霍纳法则&#xff09; 第一步&#xff1a;我们从最原始的泰勒公式出发 第二步&#xff1a;从形式上重新观察展开式 &#x1f31f; 第三步&#xff1a;引出霍纳法则&…...

Python环境安装与虚拟环境配置详解

本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南&#xff0c;适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者&#xff0c;都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

Tauri2学习笔记

教程地址&#xff1a;https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引&#xff1a;https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多&#xff0c;我按照Tauri1的教程来学习&…...

GeoServer发布PostgreSQL图层后WFS查询无主键字段

在使用 GeoServer&#xff08;版本 2.22.2&#xff09; 发布 PostgreSQL&#xff08;PostGIS&#xff09;中的表为地图服务时&#xff0c;常常会遇到一个小问题&#xff1a; WFS 查询中&#xff0c;主键字段&#xff08;如 id&#xff09;莫名其妙地消失了&#xff01; 即使你在…...