MATH2 数据集:AI辅助生成高挑战性的数学题目
随着大型语言模型(LLMs)在理解和生成复杂数学内容方面的能力显著提高,通过利用所有公开数据以及相当一部分私有数据,已经取得了进展。然而,高质量、多样化和具有挑战性的数学问题来源正在逐渐枯竭。即使是寻找新的评估问题也变得越来越困难,因为新发布的人类考试与过去的考试相似,可能已经包含在LLMs的训练数据集中。因此,迫切需要创新的方法来创造新的、多样化的和具有挑战性的问题。
本文提出一个结合 LLM 和人类专家的框架,用于生成多样且具有挑战性的数学题目。该框架利用 LLM 的元认知技能提取现有数学数据集中的核心技能,并使用这些技能生成新题目。人类专家验证并进一步改进 LLM 生成的题目,以提高其质量和难度。
1 方法
AI 辅助题目生成流程分为五个步骤,旨在利用 LLM 和人类专家的互补优势,生成新颖且具有挑战性的数学题目。
(A) 技能对验证(Skill Pair Validation) - 模型首先验证给定的技能对是否不同且不相似。如果技能太相似,它们将被标记并排除在问题生成之外。
(B) 问题生成(Question Generation) - 使用经过验证的技能对,模型生成一个需要应用两个技能的问题。问题生成时,模型需要尝试解决该问题,同时采取一种对抗性方法。
(C) 尝试解决方案(Attempted Solution) - 给定生成的问题,模型尝试解决问题,同时采取一种对抗性方法,以识别可能的问题,例如信息不足、歧义、自相矛盾或过度计算。
(D) 问题验证(Question Validation) - 根据尝试解决方案,模型验证生成的问题,检查正确性、技能严谨性、清晰度和其他质量标准。
(E) 最终解决方案(Final Solution) - 有效的问题将由模型重新解决,使用高级技术如上下文提示和多数投票,以提高最终解决方案的准确性。
人类专家对 LLM 生成的题目进行进一步审查,以确保其质量和难度。该流程有效地结合了 AI 和人类监督的优势,以确保生成的题目具有高质量和挑战性。
2 MATH2数据集
MATH2数据集是通过将大型语言模型(LLMs)的能力和人类专业知识相结合生成的高质量数学问题集合。这一数据集的创建过程始于从MATH数据集中提取数学技能,然后利用这些技能生成需要综合运用两种技能解决的问题。这些问题随后由人类标注者进行验证和进一步细化,以确保它们的挑战性和创造性。
MATH2数据集的特点包括:
- 多样性和难度:MATH2数据集中的每个问题都结合了MATH数据集中不同部分的两种技能,这样的组合为问题带来了更高的多样性和难度。
- 人类参与:人类专家在问题生成过程中扮演了关键角色。他们通过识别LLM生成的问题中的错误或不完整的想法,并对这些问题进行改进,以提高问题的质量。
- 性能评估:实验结果表明,与原始的MATH数据集相比,所有模型在MATH2数据集上的性能都有所下降,这表明MATH2数据集对模型来说更具挑战性。
- 作为上下文示例的有效性:当MATH2中的问题用作其他语言模型的上下文示例时,它们能够比MATH数据集中的标准示例更有效地提高模型在MATH数据集上的性能。
- 生成问题的质量:人类标注者在验证过程中对MATH2中的180个问题-解决方案对中的79个进行了修改,以增加问题的难度或纠正问题/解决方案。这些修改包括对问题的轻微更改以提高清晰度,以及对问题的显著更改,使其对人类更具吸引力。
- 技能覆盖:MATH2数据集覆盖了从MATH数据集中提取的97种技能中的多种技能。尽管MATH2数据集的规模有限,但它所包含的技能分布并不均匀,有些技能只由一个问题所代表。
3 实验
3.1 模型性能比较
在 MATH2 数据集上评估了各种语言模型,包括 MetaMath、MAmmoTH、Gemmma、Llama-3 系列、Phi-3、deepseek-math 和 Mixtral-8×7B-Instruct,以及大型专有模型,例如 GPT-4o、GPT-4 Turbo、Gemini-1.5-Pro、Claude 3.5 Sonnet 和 Claude 3 Opus。将这些模型在 MATH2 上的表现与其在 MATH 数据集上的表现进行了比较。
结果表明,所有测试的模型在 MATH2 上的性能都显著低于 MATH 数据集。
3.2 模型性能与 MATH 性能的平方关系
模型在 MATH2 上的成功率大约是其 MATH 成功率的平方。这种关系表明,MATH2 数据集中的每个问题都要求非平凡地应用两种不同的数学技能。
这为创建更具挑战性的评估数据集提供了启示,例如,通过将 k 种技能组合在一起来创建问题,可能会进一步放大模型之间的性能差异。
3.3 MATH2 题目作为上下文例子的有效性
使用 MATH2 题目作为上下文例子可以显著提高模型在 MATH 上的性能。这表明 MATH2 题目具有高质量和相关性,可以作为评估模型数学推理能力的有效工具。
3.4 开源模型的表现
开源模型在 MATH2 数据集上的表现不佳,但这也表明它们的表现可以通过中等难度的创新题目得到提高。该框架可以生成大量此类题目,从而帮助开源模型取得进步。
相关文章:

MATH2 数据集:AI辅助生成高挑战性的数学题目
随着大型语言模型(LLMs)在理解和生成复杂数学内容方面的能力显著提高,通过利用所有公开数据以及相当一部分私有数据,已经取得了进展。然而,高质量、多样化和具有挑战性的数学问题来源正在逐渐枯竭。即使是寻找新的评估…...

加密货币“蓄势待发”!美国松口降息!九月开始连续降息8次?2025年利率目标3.25-3.5%?
今晨,美国联准会(Fed)结束FOMC会议,一如市场预期第八度冻涨利率在5.25%-5.5%。不过主席鲍威尔(Jerome Powell)在会后的记者会访出鸽派讯号,暗示9月降息脚步将近。这一消息令金融市场顿时沸腾,美股全面大涨&…...
Vue.js 3.x 必修课|005|代码规范与 ESLint 入门
欢迎关注公众号:CodeFit 创作不易,如果你觉得这篇文章对您有帮助,请不要忘了 点赞、分享 和 关注,为我的 持续创作 提供 动力! 1. 代码规范的重要性 在现代软件开发中,代码规范扮演着至关重要的角色。 特别是在团队协作的环境中,统一的代码风格可以大大提高工作效率和…...

【Linux】动态库|静态库|创建使用|动态库加载过程
目录 编辑 前言 静态库 为什么要使用库(形成原理 ) 生成一个静态库 静态库的使用 动态库 生成一个动态库 动态库的使用 解决方法 动态库加载过程 编辑 前言 库(Library)是一种方式,可以将代码打包成可重用的格式(站…...

WebSocket 协议与 HTTP 协议、定时轮询技术、长轮询技术
目录 1 为什么需要 WebSocket?2 WebSocket2.1 采用 TCP 全双工2.2 建立 WebSocket 连接2.3 WebSocket 帧 3 WebSocket 解决的问题3.1 HTTP 存在的问题3.2 Ajax 轮询存在的问题3.3 长轮询存在的问题3.4 WebSocket 的改进 参考资料: 为什么有 h…...
二叉树节点问题
问题:设一棵二叉树中有3个叶子结点,有8个度为1的结点,则该二叉树中总的结点数为( 13)个 设某种二叉树有如下特点:每个结点要么是叶子结点,要么有2棵子树。假如一棵这样的二叉树中有m(m>0&…...

公司里的IT是什么?
公司里的IT是什么? 文章目录 公司里的IT是什么?1、公司里的IT2、IT技术3、IT行业4、IT行业常见证书 如果对你有帮助,就点赞收藏把!(。・ω・。)ノ♡ 前段时间,在公…...

【小程序爬虫入门实战】使用Python爬取易题库
文章目录 1. 写在前面2. 抓包分析 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python与爬虫领域研…...

案例 —— 怪物出水
一,Ocean Setup 设置海洋Surface Grid(使用Large Ocean工具架) 调节默认Grid的大小尺寸及细分(使用非常小尺寸来测试);调整频谱输入点的多少,频谱Grid Size,波浪方向,速度…...
vue中使用print.js实现页面打印并增加水印
1.安装print.js npm install print-js --save2.在main.js文件中引入并注册(我使用的是print.js的源码文件,并且做了一修改) //引入 import Print from ./utils/print//注册 Vue.use(Print); //注册3.在页面中使用 <template> <div class&quo…...

计算机基础(Windows 10+Office 2016)教程 —— 第5章 文档编辑软件Word 2016(下)
文档编辑软件Word 2016 5.4 Word 2016的表格应用5.4.1 创建表格5.4.2 编辑表格5.4.3 设置表格 5.5 Word 2016的图文混排5.5.1 文本框操作5.5.2 图片操作5.5.3 形状操作5.5.4 艺术字操作 5.6 Word 2016的页面格式设置5.6.1 设置纸张大小、页面方向和页边距5.6.2 设置页眉、页脚和…...

简单洗牌算法
🎉欢迎大家收看,请多多支持🌹 🥰关注小哇,和我一起成长🚀个人主页🚀 ⭐目前主更 专栏Java ⭐数据结构 ⭐已更专栏有C语言、计算机网络⭐ 在学习了ArrayList之后,我们可以通过写一个洗…...

JVM: 堆上的数据存储
文章目录 一、对象在堆中的内存布局1、对象在堆中的内存布局 - 标记字段2、JOL打印内存布局 二、元数据指针 一、对象在堆中的内存布局 对象在堆中的内存布局,指的是对象在堆中存放时的各个组成部分,主要分为以下几个部分: 1、对象在堆中的…...

AI产品经理的职责与能力:将AI技术转化为实际价值
一、AI产品经理的职责 发现和解决问题:AI产品经理需要具备敏锐的洞察力,能够发现用户需求和痛点,并提出相应的解决方案。传递价值给用户:AI产品经理需要确保产品能够满足用户的需求,提供价值,并提升用户体…...

【独家原创RIME-CNN-LSSVM】基于霜冰优化算法优化卷积神经网络(CNN)结合最小二乘向量机(LSSVM)的数据回归预测
【独家原创RIME-CNN-LSSVM】基于霜冰优化算法优化卷积神经网络(CNN)结合最小二乘向量机(LSSVM)的数据回归预测 目录 【独家原创RIME-CNN-LSSVM】基于霜冰优化算法优化卷积神经网络(CNN)结合最小二乘向量机(LSSVM)的数据回归预测效果一览基本介绍程序设计参考资料 效果一览 基本…...
如何对B站的热门视频进行分析
1. 视频内容分析 主题和类型:确定视频的主题和类型(如游戏、教育、生活、科技等),分析其是否符合当前流行趋势或特定兴趣群体。内容创意:评估视频内容的创意性和原创性,是否具有吸引力和独特性。内容质量&…...

MobaXterm tmux 配置妥当
一、事出有因 缘由:接上篇文章,用Docker搭建pwn环境后,用之前学过的多窗口tmux进行调试程序,但是鼠标滚动的效果不按预期上下翻屏。全网搜索很难找到有效解决办法,最后还是找到了一篇英文文章,解决了&…...

排序算法:快速排序,golang实现
目录 前言 快速排序 代码示例 1. 算法包 2. 快速排序代码 3. 模拟程序 4. 运行程序 5. 从大到小排序 快速排序的思想 快速排序的实现逻辑 1. 选择基准值 (Pivot) 2. 分区操作 (Partition) 3. 递归排序 循环次数测试 假如 10 条数据进行排序 假如 20 条数据进行…...

step:菜单栏静态加载和动态加载
文章目录 文章介绍静态加载动态加载补充材料 文章介绍 对比静态加载和动态加载。 主界面main.qml之前使用的是动态加载,动态加载导致的问题:菜单栏选择界面切换时,之前的界面内容被清空。 修改方法:将动态加载改为静态加载 左边是…...

【简历】武汉某985大学:前端简历指导,拿offer可能性低
注:为保证用户信息安全,姓名和学校等信息已经进行同层次变更,内容部分细节也进行了部分隐藏 简历说明 这是一份985武汉某大学25届的前端简历,那么985面向的肯定是大厂的层次,但是作为前端简历,学校部分&a…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...