当前位置: 首页 > news >正文

随机森林的算法

1、随机森林算法简介

随机森林算法(Random Forests)是LeoBreiman于2001年提出的,它是一种通过重采样办法从原始训练样本集中有放回地重复随机抽取若干个样本生成多个决策树,样本的最终预测值由这些决策树的结果投票决定的一种有监督集成学习模型。

其核心思想是通过随机的样本抽样和特征抽样生成众多决策树,形成一片“森林”,以多数的表决结果作为预测值。

随机森林作为一种bagging集成学习,在决策树算法中有着重要的地位。

2、随机森林算法基本原理

2.1 样本的选择

随机森林的样本采样选择可以看作是行采样。随机森林每棵在构建过程中,这棵树的样本从总样本中随机抽样生成。完成抽样后将样本放回,以便下一棵树的抽样。假设总样本有N个,随机森林每棵树的随机抽样样本数为n,一般可取n为N的平方根。

2.2 特征的选择

随机森林的特征采样可以看作是列采样。每棵树都是从总体M个特征中随机选择m特征进行树的生成。列采样有两种形式,一种是全局列采样,即同一棵树的生成过程中均采用同一批特征;另一种是局部列采样,即每一次节点分裂的时候都单独随机挑选m个特征进行分裂。

2.3 分裂准则

在树的生成过程中,采用的分裂准则。在随机森林算法中,可以有多种分裂准则。在随机森林的分类算法中,比较常见的有信息增益、基尼不纯度;在随机森林的回归算法中,比较常见的有均方误差。

3、随机森林算法步骤

3.1 输入输出

(1)输入:给定训练样本;参数设置:森林里树的数量、分裂的准则、分裂终止条件等。

(2)输出:样本的分类或回归值。

3.2 算法步骤

(1)从训练样本N个中随机有放回地选择n个;

(2)从特征中随机不放回地选择k个特征;

(3)根据指定的分裂准则进行分裂,生成一棵决策树;叶子节点的输出值:当为分类问题时,叶子的取值为分类最多的值;当为回归问题时,叶子节点的取值为该节点所有样本的平均值;

(4)当森林中树的数量小于指定值时,继续步骤(1)到(3),最终成生指定数量的决策树;

(5)预测时,样本在每棵决策树下会有一个对应叶子的值。当为分类问题时,最终取值为所有树下该叶子值的数量最多的值(分类);当为回归问题时,最终取值为所有树下叶子值的平均值。

4、随机森林算法实例

这里以用scikit-learn自带的数据集进行演示。

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
#加载数据集
X, y = make_classification(n_samples=1000, n_features=4,n_informative=2, n_redundant=0,random_state=0, shuffle=False)
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)#模型训练
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X_train,y_train)# 预测测试集
y_pred = clf.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print("Model accuracy: %.2f"%accuracy)
Model accuracy: 0.94

5、随机森林算法总结

(1)随机森林算法具有很高的准确性和鲁棒性。随机森林算法由众多决策树共同投票决策,其结果具有较好的准确性和鲁棒性。

(2)随机森林算法可以很好地防止过拟合。随机森林每棵树的训练都是在小部分样本及特征上训练而成,可以很好地防止过拟合。

(3)随机森林算法可以并行构建决策树,提高运算效率。

(4)随机森林算法可以很好地处理高维度数据。

(5)随机森林算法在小样本上的表现可能会不佳。

相关文章:

随机森林的算法

1、随机森林算法简介 随机森林算法(Random Forests)是LeoBreiman于2001年提出的,它是一种通过重采样办法从原始训练样本集中有放回地重复随机抽取若干个样本生成多个决策树,样本的最终预测值由这些决策树的结果投票决定的一种有监督集成学习模型。 其核…...

3.1、数据结构-线性表

数据结构 数据结构线性结构线性表顺序存储和链式存储区别单链表的插入和删除练习题 栈和队列练习题 串(了解) 数据结构 数据结构该章节非常重要,上午每年都会考10-12分选择题下午一个大题 什么叫数据结构?我们首先来理解一下什…...

记一次对HTB:Carpediem的渗透测试

信息收集 端口扫描 通过nmap对靶机端口进行探测,发现存在22和80端口。 访问web页面。发现是一个静态页面,没有可利用的部分。 目录扫描 子域枚举 通过对域名进行fuzz子域名,发现存在portal一级域名。 将它加入/etc/hosts,访问之…...

MATH2 数据集:AI辅助生成高挑战性的数学题目

随着大型语言模型(LLMs)在理解和生成复杂数学内容方面的能力显著提高,通过利用所有公开数据以及相当一部分私有数据,已经取得了进展。然而,高质量、多样化和具有挑战性的数学问题来源正在逐渐枯竭。即使是寻找新的评估…...

加密货币“蓄势待发”!美国松口降息!九月开始连续降息8次?2025年利率目标3.25-3.5%?

今晨,美国联准会(Fed)结束FOMC会议,一如市场预期第八度冻涨利率在5.25%-5.5%。不过主席鲍威尔(Jerome Powell)在会后的记者会访出鸽派讯号,暗示9月降息脚步将近。这一消息令金融市场顿时沸腾,美股全面大涨&…...

Vue.js 3.x 必修课|005|代码规范与 ESLint 入门

欢迎关注公众号:CodeFit 创作不易,如果你觉得这篇文章对您有帮助,请不要忘了 点赞、分享 和 关注,为我的 持续创作 提供 动力! 1. 代码规范的重要性 在现代软件开发中,代码规范扮演着至关重要的角色。 特别是在团队协作的环境中,统一的代码风格可以大大提高工作效率和…...

【Linux】动态库|静态库|创建使用|动态库加载过程

目录 ​编辑 前言 静态库 为什么要使用库(形成原理 ) 生成一个静态库 静态库的使用 动态库 生成一个动态库 动态库的使用 解决方法 动态库加载过程 ​编辑 前言 库(Library)是一种方式,可以将代码打包成可重用的格式(站…...

WebSocket 协议与 HTTP 协议、定时轮询技术、长轮询技术

目录 1 为什么需要 WebSocket?2 WebSocket2.1 采用 TCP 全双工2.2 建立 WebSocket 连接2.3 WebSocket 帧 3 WebSocket 解决的问题3.1 HTTP 存在的问题3.2 Ajax 轮询存在的问题3.3 长轮询存在的问题3.4 WebSocket 的改进 参考资料: 为什么有 h…...

二叉树节点问题

问题:设一棵二叉树中有3个叶子结点,有8个度为1的结点,则该二叉树中总的结点数为( 13)个 设某种二叉树有如下特点:每个结点要么是叶子结点,要么有2棵子树。假如一棵这样的二叉树中有m(m>0&…...

公司里的IT是什么?

公司里的IT是什么? 文章目录 公司里的IT是什么?1、公司里的IT2、IT技术3、IT行业4、IT行业常见证书 如果对你有帮助,就点赞收藏把!(。・ω・。)ノ♡ 前段时间,在公…...

【小程序爬虫入门实战】使用Python爬取易题库

文章目录 1. 写在前面2. 抓包分析 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python与爬虫领域研…...

案例 —— 怪物出水

一,Ocean Setup 设置海洋Surface Grid(使用Large Ocean工具架) 调节默认Grid的大小尺寸及细分(使用非常小尺寸来测试);调整频谱输入点的多少,频谱Grid Size,波浪方向,速度…...

vue中使用print.js实现页面打印并增加水印

1.安装print.js npm install print-js --save2.在main.js文件中引入并注册(我使用的是print.js的源码文件&#xff0c;并且做了一修改&#xff09; //引入 import Print from ./utils/print//注册 Vue.use(Print); //注册3.在页面中使用 <template> <div class&quo…...

计算机基础(Windows 10+Office 2016)教程 —— 第5章 文档编辑软件Word 2016(下)

文档编辑软件Word 2016 5.4 Word 2016的表格应用5.4.1 创建表格5.4.2 编辑表格5.4.3 设置表格 5.5 Word 2016的图文混排5.5.1 文本框操作5.5.2 图片操作5.5.3 形状操作5.5.4 艺术字操作 5.6 Word 2016的页面格式设置5.6.1 设置纸张大小、页面方向和页边距5.6.2 设置页眉、页脚和…...

简单洗牌算法

&#x1f389;欢迎大家收看&#xff0c;请多多支持&#x1f339; &#x1f970;关注小哇&#xff0c;和我一起成长&#x1f680;个人主页&#x1f680; ⭐目前主更 专栏Java ⭐数据结构 ⭐已更专栏有C语言、计算机网络⭐ 在学习了ArrayList之后&#xff0c;我们可以通过写一个洗…...

JVM: 堆上的数据存储

文章目录 一、对象在堆中的内存布局1、对象在堆中的内存布局 - 标记字段2、JOL打印内存布局 二、元数据指针 一、对象在堆中的内存布局 对象在堆中的内存布局&#xff0c;指的是对象在堆中存放时的各个组成部分&#xff0c;主要分为以下几个部分&#xff1a; 1、对象在堆中的…...

AI产品经理的职责与能力:将AI技术转化为实际价值

一、AI产品经理的职责 发现和解决问题&#xff1a;AI产品经理需要具备敏锐的洞察力&#xff0c;能够发现用户需求和痛点&#xff0c;并提出相应的解决方案。传递价值给用户&#xff1a;AI产品经理需要确保产品能够满足用户的需求&#xff0c;提供价值&#xff0c;并提升用户体…...

【独家原创RIME-CNN-LSSVM】基于霜冰优化算法优化卷积神经网络(CNN)结合最小二乘向量机(LSSVM)的数据回归预测

【独家原创RIME-CNN-LSSVM】基于霜冰优化算法优化卷积神经网络(CNN)结合最小二乘向量机(LSSVM)的数据回归预测 目录 【独家原创RIME-CNN-LSSVM】基于霜冰优化算法优化卷积神经网络(CNN)结合最小二乘向量机(LSSVM)的数据回归预测效果一览基本介绍程序设计参考资料 效果一览 基本…...

如何对B站的热门视频进行分析

1. 视频内容分析 主题和类型&#xff1a;确定视频的主题和类型&#xff08;如游戏、教育、生活、科技等&#xff09;&#xff0c;分析其是否符合当前流行趋势或特定兴趣群体。内容创意&#xff1a;评估视频内容的创意性和原创性&#xff0c;是否具有吸引力和独特性。内容质量&…...

MobaXterm tmux 配置妥当

一、事出有因 缘由&#xff1a;接上篇文章&#xff0c;用Docker搭建pwn环境后&#xff0c;用之前学过的多窗口tmux进行调试程序&#xff0c;但是鼠标滚动的效果不按预期上下翻屏。全网搜索很难找到有效解决办法&#xff0c;最后还是找到了一篇英文文章&#xff0c;解决了&…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...