pytest8.x版本 中文使用文档-------32.示例:使用自定义目录收集器
默认情况下,pytest 使用pytest.Package来收集包含 __init__.py 文件的目录,使用 pytest.Dir来收集其他目录。如果你想要自定义目录的收集方式,你可以编写自己的pytest.Directory 收集器,并使用 pytest_collect_directory钩子来连接它。
对于目录清单文件的一个基本示例
假设你想要自定义每个目录的收集方式。以下是一个conftest.py插件的示例,它允许目录包含一个manifest.json文件,该文件定义了该目录的收集方式。在这个示例中,仅支持一个简单的文件列表,但你可以想象添加其他键,如排除项和通配符。
from __future__ import annotations import json import pytest class ManifestDirectory(pytest.Directory): def collect(self): # pytest的标准行为是遍历所有`test_*.py`文件,并对每个文件调用`pytest_collect_file`。 # 这个收集器改为读取`manifest.json`文件,并且仅对其中定义的文件调用`pytest_collect_file`。 manifest_path = self.path / "manifest.json" manifest = json.loads(manifest_path.read_text(encoding="utf-8")) ihook = self.ihook for file in manifest["files"]: yield from ihook.pytest_collect_file( file_path=self.path / file, parent=self ) @pytest.hookimpl
def pytest_collect_directory(path, parent): # 对于包含`manifest.json`文件的目录,使用我们的自定义收集器。 if path.joinpath("manifest.json").is_file(): return ManifestDirectory.from_parent(parent=parent, path=path) # 否则,回退到标准行为。 return None
你可以创建一个 manifest.json 文件和一些测试文件:
{"files": ["test_first.py","test_second.py"]
}
# content of test_first.py
from __future__ import annotationsdef test_1():pass
# content of test_second.py
from __future__ import annotationsdef test_2():pass
# content of test_third.py
from __future__ import annotationsdef test_3():pass
现在你可以执行测试规范了:
customdirectory $ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y
rootdir: /home/sweet/project/customdirectory
configfile: pytest.ini
collected 2 itemstests/test_first.py . [ 50%]
tests/test_second.py . [100%]============================ 2 passed in 0.12s =============================
请注意,test_three.py 没有被执行,因为它没有在清单中列出。
你可以验证你的自定义收集器是否出现在收集树中:
customdirectory $ pytest --collect-only
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y
rootdir: /home/sweet/project/customdirectory
configfile: pytest.ini
collected 2 items<Dir customdirectory><ManifestDirectory tests><Module test_first.py><Function test_1><Module test_second.py><Function test_2>======================== 2 tests collected in 0.12s ========================
相关文章:
pytest8.x版本 中文使用文档-------32.示例:使用自定义目录收集器
默认情况下,pytest 使用pytest.Package来收集包含 __init__.py 文件的目录,使用 pytest.Dir来收集其他目录。如果你想要自定义目录的收集方式,你可以编写自己的pytest.Directory 收集器,并使用 pytest_collect_directory钩子来连接…...
c语言第七天笔记
作业题: 设计TVM(地铁自动售票机)机软件。 输入站数,计算费用,计费规则,6站2元,7-10站3元,11站以上为4元。 输入钱数,计算找零(找零时优先找回面额大的钞票)࿰…...
软件测试经理工作日常随记【8】-UI自动化_加密接口的传输
软件测试经理工作日常随记【8】-UI自动化_加密接口的传输 工具类 #utils_api.py class RequestUtils:classmethoddef send_request_splicing(cls, dicts, url): # 对应请求的入参及请求的函数Logger.logger_in().info(-----------------{}接口开始执行-----------------.for…...
基于FPGA的出租车计费系统设计---第一版--郝旭帅电子设计团队
欢迎各位朋友关注“郝旭帅电子设计团队”,本篇为各位朋友介绍基于FPGA的出租车计费系统设计—第一版 功能说明: 收费标准(里程):起步价5元,包括三公里;三公里之后,每公里2元&#x…...
商汤联合建工社共同打造“住建领域法规标准知识大模型”
近日,商汤科技与中国建筑出版传媒有限公司(下称“建工社”)共同发布“住建领域法规标准知识大模型”,共同探索新型知识服务模式。大模型聚焦建筑行业,以商汤“日日新SenseNova 5.5”大模型体系为基础,结合海…...
基于STM32的智能交通监控系统教程
目录 引言环境准备智能交通监控系统基础代码实现:实现智能交通监控系统 车辆检测模块交通流量分析模块通信与网络系统实现用户界面与数据可视化应用场景:交通管理与优化常见问题与解决方案收尾与总结 引言 随着城市化进程的加快,交通拥堵问…...
Git和TortoiseGit的安装与使用
文章目录 前言一、Git安装步骤查看版本信息 二、TortoiseGit安装中文语言包TortoiseGit 配置不同语言 Git基本原理介绍及常用指令 GitLab添加TortoiseGIT生成SSH Key 前言 Git 提供了一种有效的方式来管理项目的版本,协作开发,以及跟踪和应用文件的变化…...
改进YOLOv5:加入非对称卷积块ACNet,加强CNN 的内核骨架,包含VOC对比实验
🔥🔥🔥 提升多尺度、不规则目标检测,创新提升 🔥🔥🔥 🔥🔥🔥 捕捉图像特征和处理复杂图像特征 🔥🔥🔥 👉👉👉: 本专栏包含大量的新设计的创新想法,包含详细的代码和说明,具备有效的创新组合,可以有效应用到改进创新当中 👉👉👉: �…...
论文解读(12)-Transfer Learning
这个也是看论文的时候看到的,但是对这方面不是理解,需要对这方面知识点进行一个补充。 参考: 迁移学习概述(Transfer Learning)-CSDN博客 1. 什么是Transfer Learning? Transfer Learning就是迁移学习&…...
力扣高频SQL 50题(基础版)第三十八题
文章目录 力扣高频SQL 50题(基础版)第三十八题1484.按日期分组销售产品题目说明实现过程准备数据实现方式结果截图总结 力扣高频SQL 50题(基础版)第三十八题 1484.按日期分组销售产品 题目说明 表 Activities: ---…...
大模型下的视频理解video understanding
数据集 Learning Video Context as Interleaved Multimodal Sequences Motivation: 针对Narrative videos, like movie clips, TV series, etc.:因为比较复杂 most top-performing video perception models 都是研究那种原子动作or人or物 understandin…...
【网络安全】CR/LF注入+Race Condition绕过MFA
未经许可,不得转载。 文章目录 漏洞1:CR/LF注入前言正文漏洞2:Race Condition绕过MFA前言正文漏洞1:CR/LF注入 前言 ExaHub(此处为虚拟名称)是一个专为 Exa 编程语言的爱好者和专业人士量身定制的平台。Exa 语言以其出色的速度和性能而闻名,广泛应用于科学计算、机器学…...
深度学习入门——卷积神经网络
本章的主题是卷积神经网络(Convolutional Neural Network,CNN)。CNN被用于图像识别、语音识别等各种场合,在图像识别的比赛中,基于深度学习的方法几乎都以CNN为基础。本章将详细介绍CNN的结构,并用Python实…...
快团团供货大大团长帮卖团长如何线上结算和支付货款?
一、如何支付结算单? 团长在快团团小程序【我的供货商】—【结算单】—【待支付】中,找到需要支付的结算单,点击【去支付】即可。 当有多笔结算单待支付时,团长可筛选供货商和日期找到需要支付的结算单,点击【去批量…...
vite vue3 Webstorm multiple export width the same name “default“
系统格式不一样,导致代码文件格式冲突导致的,解决方法找到对应的文件,将文件类型切换成LF。...
Transformer预测模型及其Python和MATLAB实现
### 一、背景 在自然语言处理(NLP)领域,传统的序列到序列(Seq2Seq)模型大多依赖于循环神经网络(RNN)和长短期记忆(LSTM)网络。这些模型虽然在许多任务中取得了成功&…...
草的渲染理论
Unity引擎提供了基础的terrain工具,可以制作地形,在上面刷树刷草。对于树,Unity是支持带LOD的Prefab,不同距离显示不同细节的模型,效果还不错。对于草,Unity支持两种方式来刷草,一种是Add Grass…...
Redis:十大数据类型
键(key) 常用命令 1. 字符串(String) 1.1 基本命令 set key value 如下:设置kv键值对,存货时长为30秒 get key mset key value [key value ...]mget key [key ...] 同时设置或者获取多个键值对 getrange…...
bugku-web-source
kali中先用dirsearch工具扫描后台目录,然后用wget -r url/.git命令递归下载后,进入txt文件使用git reflog命令然后只用git show查看作者提交flag日志,用git show 一个一个去尝试,很多假的flag git reflog 是一个 Git 命令&#x…...
一键生成视频并批量上传视频抖音、bilibili、腾讯(已打包)
GenerateAndAutoupload Github地址:https://github.com/cmdch2017/GenerateAndAutoupload 如何下载(找到最新的release) https://github.com/cmdch2017/GenerateAndAutoupload/releases/download/v1.0.1/v1.0.1.zip 启动必知道 conf.py …...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
