当前位置: 首页 > news >正文

C++必修:STL之vector的模拟实现

✨✨ 欢迎大家来到贝蒂大讲堂✨✨

🎈🎈养成好习惯,先赞后看哦~🎈🎈

所属专栏:C++学习
贝蒂的主页:Betty’s blog

为了让我们更加深入理解vector,接下来我们将模拟实现一个·简易版的vector。而为了和STL库中的vecotr以示区分,我们将使用命名空间namespace对其封装。

1. vector的成员变量

vector的底层其实就是我们之前在数据结构学习的顺序表,但是与顺序表不同的是vector的成员变量是三个迭代器,也可以说是三个指针。

下面是vector的成员变量:

namespace betty 
{template<class T>class vector {public://...private:iterator _start;iterator _finish;iterator _end_of_storage;};
}

其中start指向起始位置,_finish指向有效数据末尾的后一个位置,最后_end_of_storage指向容量大小末尾的后一个位置。

img

2. vector的成员函数

在知道vector的成员变量之后,接下来我们将探究vector的成员函数,而常见成员函数的用法我们早在之前就已经介绍过了 ,下面我们将来具体实现一下:

2.1. vector的迭代器

首先我们来模拟实现一下迭代器iterator,而在vector中迭代器iteratorstring中的迭代器类似就是一个指针。所以我们直接使用typedef实现

typedef char* iterator;//普通迭代器
typedef const char* const_iterator;//const迭代器

接下来我们来实现begin()end(),其中begin()指向的是数组的起始位置即_start,而end指向有效长度最后的下一位即_finish的位置。

iterator begin()
{return _start;
}iterator end()
{return _finish;
}

实现完普通迭代器之后,我们可以顺便重载一个const_iterator的版本。

const_iterator begin()  const
{return _start;
}const_iterator end()	const
{return _finish;
}

我们知道在vector中还有一个反向迭代器,这个我们在之后会统一实现。

2.2. vector的初始化与销毁

2.2.1. 构造函数与拷贝构造

我们之前在学习vector时知道其初始化方式有很多,可以通过默认构造函数给其初始化,n个val初始化,也可以通过迭代器初始化。

首先我们写一个默认构造函数,将其所有变量都设为空。

vector():_start(nullptr),_finish(nullptr),_end_of_storage(nullptr)
{;
}

接下来我们来实现迭代器初始化,而因为我们可以通过其他容器的迭代器对其初始化,所以要通过模版来实现。

template<class InputIterator>
vector(InputIterator first, InputIterator last)
{while (first != last){push_back(*first);++first;}
}

最后我们来实现n个val初始化。

vector(size_t n, const T& val = T())
{resize(n, val);
}
vector(int n, const T& val = T())
{resize(n, val);
}

至于为什么要同时重载intsize_t两种不同类型,那是为了防止在传两个int类型的参数时被编译器交给模版InputIterator识别,然后报错。

拷贝构造也十分简单,直接拷贝就行,但是也有一些注意事项。

vector(const vector<T>& v)
{_start = new T[v.capacity()];//开辟capacity的空间for (size_t i = 0; i < v.size(); ++i){_start[i] = v._start[i];//进行深拷贝}_finish = _start + v.size();//更新_finish_end_of_storage = _start + v.capacity();//更新_end_of_storage
}

这里注意不能利用memcpy()等库函数进行拷贝,因为这些函数都是进行的浅拷贝。如果模版参数Tstringvector等自定义类型,当程序结束回收内存时就会发生内存错误。

img

当然我们也可以通过一个取巧的方式来实现拷贝构造。

vector(vector<int>& v)
{// 根据v的capacity()去开出对应的空间reserve(v.capacity());//进行深拷贝for (size_t i = 0; i < v.size(); i++){push_back(v[i]);}
}

首先通过构造出一个与数组相同的数组v,然后让this所指向的数组与其交换,这样出了作用域之后销毁的就是原this所指向的数组。当然我们必须先将this所指向的数组先初始化扩容。

2.2.2. 赋值重载与析构函数

赋值运算符重载与拷贝构造的实现就非常类似了,直接实现即可。

vector<T> operator = (vector<T> v)
{swap(v);return *this;
}

最后我们实现析构函数,只需要清理资源即可

~vector()
{delete[]_start;_start = _finish = _end_of_storage = nullptr;
}

2.3. vector的容量操作

2.3.1. 有效长度与容量大小

首先我们先实现返回数组有效长度的size() 与容量大小的capacity()。并且为了适配const对象,最后用const修饰this指针。

size_t size() const
{return _finish - _start;
}
size_t capacity() const
{return _end_of_storage - _start;
}
2.3.2. 容量操作

接下来我们来实现扩容函数reserve()与·resize(),其中reserve()最简单,只要新容量大于旧容量就发生扩容,其中注意需要提前记录size大小,防止数组异地扩容原数组释放之后找不到原数组大小。

void reserve(size_t n)
{//提前原本记录长度size_t sz = size();if (n > capacity()){T* tmp = new T[n];if (_start){//深拷贝for (size_t i = 0; i < size(); i++){tmp[i] = _start[i];//赋值重载}delete[]_start;}_start = tmp;_finish = _start + sz;_end_of_storage = _start + n;}
}

resize()的逻辑就比较复杂,需要分三种情况讨论。设字符串原来有效长度为size,容量为capacity,新容量为n

  1. n<size时,resize会删除有效字符到指定大小。
  2. size<n<capcity时,resize会补充有效字符(默认为0)到指定大小。
  3. n>capacity时,resize会补充有效字符(默认为0)到指定大小。
void resize(size_t n,const T&val=T())
{if (n < size()){//更新数组大小_finish = _start + n;}else{//扩容reserve(n);while (_finish != _start + n){*_finish = val;++_finish;}}
}

2.4. vector的访问操作

为了符合我们C语言访问数组的习惯,我们可以先重载operator[]。当然我们也要提供两种不同的接口:可读可写与可读不可写。并且使用引用返回,减少不必要的拷贝。

// 可读可写
T& operator[](size_t pos)
{assert(pos < size());return _start[pos];
}
// 可读不可写
T& operator[](size_t pos)const
{assert(pos < size());return _start[pos];
}

同理我们也可以实现front()back()函数。

// 可读可写
char& front()
{return _start[0];
}
char& back()
{return _start[_size() - 1];
}
// 可读不可写
const char& front()const
{return _start[0];
}
const char& back()const
{return _start[_size() - 1];
}

2.5. vector的修改操作

2.5.1. 常见的修改操作

首先我们将实现两个常用的修改函数:push_back()pop_back()

void push_back(const T& x)
{//判断是否扩容if (_finish == _end_of_storage){size_t newCapacity = capacity() == 0 ? 4 : 2 * capacity();reserve(newCapacity);}*_finish = x;++_finish;
}
void pop_back()
{--_finish;
}

随后我们来实现数组的交换swap()函数,我们知道vector的交换其实就是指针_start_finish_end_of_storage的交换。

void swap(vector<T>& v)
{std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);
}

img

2.5.2. 迭代器失效

接下来我们实现insert()erase()两个函数。其中insert()在插入时可能扩容,这时就需要记录起始长度,方便更新迭代器返回。

iterator insert(iterator pos, const T& x)
{assert(pos <= _finish && pos >= _start);//检查是否扩容if (_finish == _end_of_storage){//先记录长度size_t len = pos - _start;size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;reserve(newCapacity);//更新迭代器指向新空间pos = _start + len;}//往后覆盖iterator end = _finish;while (end > pos){*end = *(end - 1);--end;}*pos = x;++_finish;return pos;
}

同样的为了防止迭代器失效,需要返回新的迭代器。

iterator erase(iterator pos)
{assert(pos >= _start && pos < _finish);iterator end = pos + 1;while (end != _finish){*(end - 1) = *end;++end;}--_finish;return pos;
}

3. 源码

#pragma once
namespace betty
{template<class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;vector():_start(nullptr),_finish(nullptr),_end_of_storage(nullptr){;}vector(size_t n, const T& val = T()){resize(n, val);}vector(int n, const T& val = T()){resize(n, val);}template<class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}//vector(const vector<T>& v)//{//	_start = new T[v.capacity()];//开辟capacity的空间//	for (size_t i = 0; i < v.size(); ++i)//	{//		_start[i] = v._start[i];//循环拷贝//	}//	_finish = _start + v.size();//更新_finish//	_end_of_storage = _start + v.capacity();//更新_end_of_storage//}vector(vector<int>& v){// 根据v的capacity()去开出对应的空间reserve(v.capacity());//进行深拷贝for (size_t i = 0; i < v.size(); i++){push_back(v[i]);}}vector<T> operator=(vector<T> v){swap(v);return *this;}iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin()const{return _start;}const_iterator end()const{return _finish;}size_t size() const{return _finish - _start;}size_t capacity() const{return _end_of_storage - _start;}void reserve(size_t n){//提前原本记录长度size_t sz = size();if (n > capacity()){T* tmp = new T[n];if (_start){//深拷贝for (size_t i = 0; i < size(); i++){tmp[i] = _start[i];//赋值重载}delete[]_start;}_start = tmp;_finish = _start + sz;_end_of_storage = _start + n;}}void push_back(const T& x){//判断是否扩容if (_finish == _end_of_storage){size_t newCapacity = capacity() == 0 ? 4 : 2 * capacity();reserve(newCapacity);}*_finish = x;++_finish;}void resize(size_t n,const T&val=T()){if (n < size()){_finish = _start + n;}else{reserve(n);while (_finish != _start + n){*_finish = val;++_finish;}}}T& operator[](size_t pos){assert(pos < size());return _start[pos];}T& operator[](size_t pos)const{assert(pos < size());return _start[pos];}iterator insert(iterator pos, const T& x){assert(pos <= _finish && pos >= _start);//检查是否扩容if (_finish == _end_of_storage){//先记录长度size_t len = pos - _start;size_t newCapacity = capacity() == 0 ? 4 : capacity() * 2;reserve(newCapacity);//更新迭代器指向新空间pos = _start + len;}//往后覆盖iterator end = _finish;while (end > pos){*end = *(end - 1);--end;}*pos = x;++_finish;return pos;}iterator erase(iterator pos){assert(pos >= _start && pos < _finish);iterator end = pos + 1;while (end != _finish){*(end - 1) = *end;++end;}--_finish;return pos;}void pop_back(){--_finish;}void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}~vector(){delete[]_start;_start = _finish = _end_of_storage = nullptr;}private:iterator _start;iterator _finish;iterator _end_of_storage;};
}
ase(iterator pos){assert(pos >= _start && pos < _finish);iterator end = pos + 1;while (end != _finish){*(end - 1) = *end;++end;}--_finish;return pos;}void pop_back(){--_finish;}void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}~vector(){delete[]_start;_start = _finish = _end_of_storage = nullptr;}private:iterator _start;iterator _finish;iterator _end_of_storage;};
}

相关文章:

C++必修:STL之vector的模拟实现

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;C学习 贝蒂的主页&#xff1a;Betty’s blog 为了让我们更加深入理解vector&#xff0c;接下来我们将模拟实现一个简易版的vect…...

Unity Camera

课程目标 1. 了解摄像机&#xff08;camera&#xff09;不同视角的设计与实现&#xff1b;2. 感受在不同摄像机视角下观察虚拟场景。 喜欢玩游戏或者看3D动漫的朋友可以回忆在虚拟场景中摄像头的运动变化带来的视觉感受&#xff0c;例如&#xff1a;摄像头给场景中的主角来个…...

CSS雷达光波效果(前端雷达光波效果)

前言 CSS雷达光波效果是一种视觉动画效果&#xff0c;常用于模仿雷达扫描或检测的视觉反馈。这种效果通常涉及到动态的圆形或弧形图案&#xff0c;它们从一个中心点向外扩散&#xff0c;类似于水面上的涟漪或雷达扫描线。以下是创建CSS雷达光波效果的一些关键技术和步骤&#…...

【C语言】【数据结构】冒泡排序及优化

一、算法思想 冒泡排序是一种简单的排序算法。一次从前往后地走访待排序的元素序列被称为一趟&#xff0c;每一趟都会把相邻的两个元素的错误顺序交换&#xff0c;将当前趟次中最大或者最小的元素像“冒泡泡”一样冒到最后面&#xff0c;反复地走访元素序列&#xff0c;直到所有…...

3种 Ajax 方式:原生、jQuery、axios

毋庸多言&#xff0c;Ajax 技术在网页中是划时代的进步。学会它&#xff0c;可以说掌握了一招半式&#xff0c;不再是门外汉了。 这里将 3 种 Ajax 方式一并呈上。 感谢 https://run.uv.cc/ 平台&#xff0c;以及 /api 接口 https://andi.cn/page/621639.html https://andi…...

Node.js 根据表结构动态生成目标代码

文章目录 前言项目背景使用的技术栈步骤一&#xff1a;设置 Node.js 项目步骤二&#xff1a;连接 SQL Server 数据库步骤三&#xff1a;查询数据库表结构步骤四&#xff1a;生成模板代码步骤五&#xff1a;整合所有功能总结 前言 在现代的前端开发中&#xff0c;使用 Vue3 搭配…...

渗透测试实战—云渗透(AK/SK泄露)

免责声明&#xff1a;文章来源于真实渗透测试&#xff0c;已获得授权&#xff0c;且关键信息已经打码处理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本…...

【机器学习】机器学习与医疗健康在疾病预测中的融合应用与性能优化新探索

文章目录 引言第一章&#xff1a;机器学习在医疗健康中的应用1.1 数据预处理1.1.1 数据清洗1.1.2 数据归一化1.1.3 特征工程 1.2 模型选择1.2.1 逻辑回归1.2.2 决策树1.2.3 随机森林1.2.4 支持向量机1.2.5 神经网络 1.3 模型训练1.3.1 梯度下降1.3.2 随机梯度下降1.3.3 Adam优化…...

MySQL(8.0)数据库安装和初始化以及管理

1.MySQL下载安装和初始化 1.下载安装包 下载地址&#xff1a;https://downloads.mysql.com/archives/get/p/23/file/mysql-8.0.33-1.el7.x86_64.rpm-bundle.tar wget https://downloads.mysql.com/archives/get/p/23/file/mysql-8.0.33-1.el7.x86_64.rpm-bundle.tar 2.解压…...

C# Web控件与数据感应之 TreeView 类

目录 关于 TreeView 一些区别 准备数据源 范例运行环境 一些实用方法 获取数据进行呈现 ​根据ID设置节点 获取所有结点的索引 小结 关于 TreeView 数据感应也即数据捆绑&#xff0c;是一种动态的&#xff0c;Web控件与数据源之间的交互&#xff0c;本文将继续介绍与…...

java使用责任链模式进行优化代码

1.什么是责任链 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为设计模式&#xff0c;它允许多个对象有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。每个收到请求的对象要么处理该请求&#xff0c;要么将它传递给链中…...

【人工智能】边缘计算与 AI:实时智能的未来

&#x1f48e; 我的主页&#xff1a;2的n次方_ &#x1f48e;1. 引言 随着物联网设备数量的爆炸性增长和对实时处理需求的增加&#xff0c;边缘计算与人工智能&#xff08;Edge AI&#xff09;成为一个热门话题。Edge AI 通过在本地设备上运行 AI 算法&#xff0c;减少对云计…...

Day12--Servlet实现前后端交互(案例:学生信息管理系统登录页面)

&#xff08;在一个完整的项目架构中&#xff0c;servlet的角色和位置&#xff09; Servlet、GenericServlet和HttpServlet三者之间的关系是Java Web开发中的一个重要概念&#xff0c;它们共同构成了基于Java的服务器端程序的基础。以下是具体分析&#xff1a; 1. Servlet接口…...

Android 安装应用-准备阶段

安装应用的准备阶段是在PackageManagerService类中的preparePackageLI(InstallArgs args, PackageInstalledInfo res)&#xff0c;代码有些长&#xff0c;分段阅读。 分段一 分段一&#xff1a; GuardedBy("mInstallLock")private PrepareResult preparePackageLI(I…...

【JKI SMO】框架讲解(九)

本节内容将演示如何向SMO框架添加启动画面。 1.打开LabVIEW新建一个空白项目&#xff0c;并保存。 2.找到工具&#xff0c;打开SMO Editor。 3.新建一个SMO&#xff0c;选择SMO.UI.Splash。 4. 打开LabVIEW项目&#xff0c;可以看到项目里多了一个SystemSplash类。 打开Process…...

Linux通过Docker安装Microsoft Office+RDP远程控制

之前根据B站教程《在linux上安装微软office》&#xff1a;在linux上安装微软office_哔哩哔哩_bilibili 写过一篇使用KVM虚拟机安装Microsoft OfficeRDP远程控制的文章&#xff0c;根据B站的教程安装后&#xff0c;发现有远程控制延迟的问题&#xff0c;比如拖动Office窗口时会…...

利用Qt实现调用文字大模型的API,文心一言、通义千问、豆包、GPT、Gemini、Claude。

利用Qt实现调用文字大模型的API&#xff0c;文心一言、通义千问、豆包、GPT、Gemini、Claude。 下载地址: AI.xyz 1 Qt实现语言大模型API调用 视频——Qt实现语言大模型API调用 嘿&#xff0c;大家好&#xff01;分享一个最近做的小项目 “AI.xyz” 基于Qt实现调用各家大模型…...

借助医疗保健专用的 LLM提高诊断支持与准确性

概述 最近的研究表明&#xff0c;大规模语言模型在医疗人工智能应用中非常有效。它们在诊断和临床支持系统中的有效性尤为明显&#xff0c;在这些系统中&#xff0c;它们已被证明能为各种医疗询问提供高度准确的答案&#xff08;例如&#xff0c;医生在诊断过程中需要用到语言…...

微前端(qiankun)

微前端 特点&#xff1a;独立开发、独立部署&#xff0c;独立运行&#xff0c;增量升级 解决的问题&#xff1a;日常开发过程中&#xff0c;可能有很多老项目需要迭代&#xff0c;但是可能新的一些可能需要使用的依赖或者新的一些框架&#xff0c;老项目已经不满足&#xff0c;…...

速通c++(周二)

前言 Hello&#xff0c;大家好啊&#xff0c;我是文宇&#xff0c;不是文字&#xff0c;是文宇哦。 今天是速通c第二期。 运算符 c里的运算符种类有很多&#xff0c;因为这个教程是入门教程&#xff0c;所以只介绍其中我们会用到的几种。 算数运算 c中的算数运算有九个&a…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...