图论进阶之路-最短路(Floyd)
时间复杂度:O(n^3)
使用场景:当需要得知任意两个点的最短距离以及其路径时使用
准备:需要两个矩阵
一个记录最短距离(D)
一个记录最短路径的最后一个结点(P)
其核心在于不断的判断越过中间结点是否比不越过中间节点距离更短,迭代的结果也会影响到后面的路径的更新,通过不断的更新,使得每两个节点直接的距离被都更新到最短
具体过程:
1.初始化 D,P 矩阵,D 矩阵初始化为所有结点的入度距离,P 矩阵 初始化为所有结点的入度结点
int MAX = Integer.MAX_VALUE;int[][] D = {{MAX,MAX,MAX,MAX, 6},{ 9,MAX, 3,MAX,MAX},{ 2,MAX,MAX, 5,MAX},{MAX,MAX,MAX,MAX, 1},{MAX,MAX,MAX,MAX,MAX}};int[][] P = {{-1,-1,-1,-1, 0},{ 1,-1, 1,-1,-1},{ 2,-1,-1, 2,-1},{-1,-1,-1,-1, 3},{-1,-1,-1,-1,-1}};
2.将每一个点都做一次中间结点
3.在当前中间节点的基础上,遍历所有结点,更新最短路
关于两个矩阵更新规则:
- D: 根据上一次的 D ,若 遍历到的结点到中间结点 + 中间结点到目标结点 < 上一次遍历到的结点到目标结点,就更新
- P: 若 D 发生变动,则将路径更新为 上一次 中间结点到目标节点的路径
共五个结点,故我们需要重复 5 次 2,3 步骤
public static void main(String[] args) {int MAX = Integer.MAX_VALUE/2;int[][] D = {{MAX,MAX,MAX,MAX, 6},{ 9,MAX, 3,MAX,MAX},{ 2,MAX,MAX, 5,MAX},{MAX,MAX,MAX,MAX, 1},{MAX,MAX,MAX,MAX,MAX}};int[][] P = {{-1,-1,-1,-1, 0},{ 1,-1, 1,-1,-1},{ 2,-1,-1, 2,-1},{-1,-1,-1,-1, 3},{-1,-1,-1,-1,-1}};for(int k=0;k<5;k++) {//中间结点 //遍历所有的结点对for(int i=0;i<5;i++) {for(int j=0;j<5;j++) {if(D[i][k] + D[k][j] < D[i][j]) {D[i][j] = D[i][k] + D[k][j];P[i][j] = P[k][j];}}}}}
当中间点为 0 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[9, ∞, 3, ∞, 15]
[2, ∞, ∞, 5, 8]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[1, -1, 1, -1, 0]
[2, -1, -1, 2, 0]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
当中间点为 1 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[9, ∞, 3, ∞, 15]
[2, ∞, ∞, 5, 8]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[1, -1, 1, -1, 0]
[2, -1, -1, 2, 0]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
当中间点为 2 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[5, ∞, 3, 8, 11]
[2, ∞, ∞, 5, 8]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[2, -1, 1, 2, 0]
[2, -1, -1, 2, 0]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
当中间点为 3 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[5, ∞, 3, 8, 9]
[2, ∞, ∞, 5, 6]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[2, -1, 1, 2, 3]
[2, -1, -1, 2, 3]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
当中间点为 4 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[5, ∞, 3, 8, 9]
[2, ∞, ∞, 5, 6]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[2, -1, 1, 2, 3]
[2, -1, -1, 2, 3]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
4.若最后需要得到最短路路径:可以通过 先找到 路径矩阵的位置,得到前一个点,再找到该点与前一个点的前一个点,直到前一个点变成自身为止
如:我们要找到 v1 到 v0 的最短路径
先找到 1 -> 0 的最近的前一个结点,也就是 P[1][0] = 2
得知了前一个结点为 2 ,记录路径 2 -> 0
继续往前找,1 -> 2 的前一个结点,也就是 P[1][2] = 1
得知了前一个结点为 1,记录路径 1 -> 2 -> 0
再继续往前就是寻找 1 -> 1 ,自己找自己的时候就代表路径已经完整了
故 v1 到 v0 的最短路径为: 1 -> 2 -> 0
相关文章:

图论进阶之路-最短路(Floyd)
时间复杂度:O(n^3) 使用场景:当需要得知任意两个点的最短距离以及其路径时使用 准备:需要两个矩阵 一个记录最短距离(D) 一个记录最短路径的最后一个结点(P) 其核心在于不断的判断越过中间…...

安装sqllab靶机之后,练习关卡报403 forbidden
解决办法: 在nginx的conf文件中添加上访问index.php vim /usr/local/nginx/conf/nginx.conf 保存退出 再重启一下nginx,就完成了。 ./nginx -s reload...

微信VX多开 免扫码 登录 互斥体 可视化 Exui v1.1 易语言源码附成品软件
UI设计: 1. EXUI界面库20240204 调用的模块: 1. wow64_hook_3.02.ec(压缩包内含) 2. 精易模块[v11.1.0].ec(自行下载) 更新日志: v1.1 2024年7月25日13:28:43 { 1. 有人反馈 设置了V…...

JavaEE 从入门到精通(一) ~ Maven
晚上好,愿这深深的夜色给你带来安宁,让温馨的夜晚抚平你一天的疲惫,美好的梦想在这个寂静的夜晚悄悄成长。 目录 前言 1.1 概念 什么是 Maven? Maven 的核心概念 1.2 maven依赖坐标 1.3 maven仓库 1.4 maven安装 1.5 mave…...

滚珠丝杆与丝杆支撑座:稳定性与精度的双重保障
丝杆支撑座是连接滚珠丝杆与电机的轴承,采用优质的轴承能确保支撑座与滚珠丝杆之间的刚性平衡。那么,滚珠丝杆搭连接杆支撑座有哪些优缺点呢? 正常情况下,丝杆支撑座能够提供稳定的支撑力,确保滚珠丝杆在复杂工况下保持…...
实验5-11 空心的数字金字塔
本题要求实现一个函数,输出n行空心的数字金字塔。 函数接口定义: void hollowPyramid( int n );其中n是用户传入的参数,为[1, 9]的正整数。要求函数按照如样例所示的格式打印出n行空心的数字金字塔,请注意,最后一行的…...

C#对象和类型
属性、方法、字段 字段和属性的区别 在C#中,字段(fields)和属性(properties)都是类的成员,它们提供了类存储数据的方式,但它们在用途和功能上有着明显的区别。 字段 字段通常用来存储类…...

免费分享一套SpringBoot+Vue图书(图书借阅)管理系统【论文+源码+SQL脚本】,帅呆了~~
大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue图书(图书借阅)管理系统,分享下哈。 项目视频演示 【免费】SpringBootVue图书(图书借阅)管理系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 本论文阐述了一套先进的图书管理系…...

数据结构与算法--队列
文章目录 提要队列的定义队列的认识队列的应用队列的抽象数据类型队列的存储结构队列的链式存储结构与实现链队的进队和出队操作链队的数据类型初始化链队列入队操作出队操作队列的顺序存储结构与实现顺序队列的假溢出问题队列上溢循环队列循环队列取下一相邻单元下标运算队满与…...

<Qt> 常用控件
目录 一、控件概述 二、QWidget 核心属性 (一)QWidget的核心属性概览 1. enabled 2. geometry 3. WindowFrame的影响 4. windowTitle 5. window Icon 6. windowOpacity 7. cursor 8. font 9. toolTip 10. focusPolicy 11. styleSheet 三、…...
关于C/C++的编译、构建、CMake、x86_amd64等问题(自用)
被这些玩意整红温了 编译器版本 x86:编译器为x86版本,输出文件为x86。amd64_x86:编译器为amd64版本,输出文件为x86。amd64:编译器为amd64版本,输出文件为amd64。x86_amd64:编译器为x86版本&am…...

【设计模式】工厂模式详解
1.简介 工厂模式是一种创建型设计模式,通过提供一个接口或抽象类来创建对象,而不是直接实例化对象。工厂模式的主要思想是将对象的创建与使用分离,使得创建对象的过程更加灵活和可扩展。 工厂模式主要包括以下角色: 抽象工厂&a…...

【Spring Boot】用 Spring Security 实现后台登录及权限认证功能
用 Spring Security 实现后台登录及权限认证功能 1.引入依赖2.创建权限开放的页面3.创建需要权限验证的页面4.配置 Spring Security4.1 配置 Spring MVC4.2 配置 Spring Security 5.创建登录页面6.测试权限 1.引入依赖 使用前需要引入相关依赖,见以下代码ÿ…...

PHP开发【石头剪刀布小游戏】
石头剪刀布小游戏 玩法超级简单,你只需要在下面选择石头、剪刀或者布,然后提交,系统就会随机生成电脑的选择,告诉你最终的结果哦! 游戏规则: 如果你的选择和电脑一样,那么就是平局。如果你赢…...

(leetcode学习)42. 接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表…...
Python编程实例2
一、通过用户输入数字计算阶乘 # 获取用户输入的数字 num int(input("请输入一个数字: ")) factorial 1 # 查看数字是负数,0 或 正数 if num < 0:print("抱歉,负数没有阶乘") elif num 0:print("0 的阶乘为 1") e…...

排序算法:堆排序,golang实现
目录 前言 堆排序 代码示例 1. 算法包 2. 堆排序代码 3. 模拟程序 4. 运行程序 5. 从大到小排序 堆排序的思想 堆排序的实现逻辑 1. 构建最大堆 2. 排序 循环次数测试 假如 10 条数据进行排序 假如 20 条数据进行排序 假如 30 条数据进行排序 假设 5000 条数据…...

【网络安全入门】学习网络安全必须知道的77个网络基础知识
1、TCP/IP 协议的四层模型(网络接口层、网络层、传输层、应用层) TCP/IP 协议是互联网通信的基础,四层模型中,网络接口层负责与物理网络的连接;网络层主要处理 IP 数据包的路由和转发;传输层提供端到端的可…...

limit 以及分页 SQL 语句
目录 1. 作用 2. 演示 3. 分页 SQL 语句 1. 作用 获取结果集的一部分; 2. 演示 (1)如下,获取表的前三行; (2)只有一个数字,默认从 0 开始; (3&#x…...
mysql8.0规范
MySQL 数据库开发规范 目录 背景与目标规范列表 1. 库表设计 1.1 必须字段1.2 命名规范 2. 定义规范 2.1 约束规范2.2 类型规范 2.2.1 字段类型与长度2.2.2 状态字段数据类型2.2.3 布尔型2.2.4 varchar和text, json2.2.5 decimal(m,d) 3. 索引规范4. 其他规范5. SQL 使用 5.…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
加密通信 + 行为分析:运营商行业安全防御体系重构
在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...

结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...