图论进阶之路-最短路(Floyd)
时间复杂度:O(n^3)
使用场景:当需要得知任意两个点的最短距离以及其路径时使用
准备:需要两个矩阵
一个记录最短距离(D)
一个记录最短路径的最后一个结点(P)
其核心在于不断的判断越过中间结点是否比不越过中间节点距离更短,迭代的结果也会影响到后面的路径的更新,通过不断的更新,使得每两个节点直接的距离被都更新到最短
具体过程:
1.初始化 D,P 矩阵,D 矩阵初始化为所有结点的入度距离,P 矩阵 初始化为所有结点的入度结点
int MAX = Integer.MAX_VALUE;int[][] D = {{MAX,MAX,MAX,MAX, 6},{ 9,MAX, 3,MAX,MAX},{ 2,MAX,MAX, 5,MAX},{MAX,MAX,MAX,MAX, 1},{MAX,MAX,MAX,MAX,MAX}};int[][] P = {{-1,-1,-1,-1, 0},{ 1,-1, 1,-1,-1},{ 2,-1,-1, 2,-1},{-1,-1,-1,-1, 3},{-1,-1,-1,-1,-1}};
2.将每一个点都做一次中间结点
3.在当前中间节点的基础上,遍历所有结点,更新最短路
关于两个矩阵更新规则:
- D: 根据上一次的 D ,若 遍历到的结点到中间结点 + 中间结点到目标结点 < 上一次遍历到的结点到目标结点,就更新
- P: 若 D 发生变动,则将路径更新为 上一次 中间结点到目标节点的路径
共五个结点,故我们需要重复 5 次 2,3 步骤
public static void main(String[] args) {int MAX = Integer.MAX_VALUE/2;int[][] D = {{MAX,MAX,MAX,MAX, 6},{ 9,MAX, 3,MAX,MAX},{ 2,MAX,MAX, 5,MAX},{MAX,MAX,MAX,MAX, 1},{MAX,MAX,MAX,MAX,MAX}};int[][] P = {{-1,-1,-1,-1, 0},{ 1,-1, 1,-1,-1},{ 2,-1,-1, 2,-1},{-1,-1,-1,-1, 3},{-1,-1,-1,-1,-1}};for(int k=0;k<5;k++) {//中间结点 //遍历所有的结点对for(int i=0;i<5;i++) {for(int j=0;j<5;j++) {if(D[i][k] + D[k][j] < D[i][j]) {D[i][j] = D[i][k] + D[k][j];P[i][j] = P[k][j];}}}}}
当中间点为 0 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[9, ∞, 3, ∞, 15]
[2, ∞, ∞, 5, 8]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[1, -1, 1, -1, 0]
[2, -1, -1, 2, 0]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
当中间点为 1 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[9, ∞, 3, ∞, 15]
[2, ∞, ∞, 5, 8]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[1, -1, 1, -1, 0]
[2, -1, -1, 2, 0]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
当中间点为 2 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[5, ∞, 3, 8, 11]
[2, ∞, ∞, 5, 8]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[2, -1, 1, 2, 0]
[2, -1, -1, 2, 0]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
当中间点为 3 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[5, ∞, 3, 8, 9]
[2, ∞, ∞, 5, 6]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[2, -1, 1, 2, 3]
[2, -1, -1, 2, 3]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
当中间点为 4 时,两个矩阵的更新结果为:
[∞, ∞, ∞, ∞, 6]
[5, ∞, 3, 8, 9]
[2, ∞, ∞, 5, 6]
[∞, ∞, ∞, ∞, 1]
[∞, ∞, ∞, ∞, ∞]
---------------------------------
[-1, -1, -1, -1, 0]
[2, -1, 1, 2, 3]
[2, -1, -1, 2, 3]
[-1, -1, -1, -1, 3]
[-1, -1, -1, -1, -1]
=================================
4.若最后需要得到最短路路径:可以通过 先找到 路径矩阵的位置,得到前一个点,再找到该点与前一个点的前一个点,直到前一个点变成自身为止
如:我们要找到 v1 到 v0 的最短路径
先找到 1 -> 0 的最近的前一个结点,也就是 P[1][0] = 2
得知了前一个结点为 2 ,记录路径 2 -> 0
继续往前找,1 -> 2 的前一个结点,也就是 P[1][2] = 1
得知了前一个结点为 1,记录路径 1 -> 2 -> 0
再继续往前就是寻找 1 -> 1 ,自己找自己的时候就代表路径已经完整了
故 v1 到 v0 的最短路径为: 1 -> 2 -> 0
相关文章:

图论进阶之路-最短路(Floyd)
时间复杂度:O(n^3) 使用场景:当需要得知任意两个点的最短距离以及其路径时使用 准备:需要两个矩阵 一个记录最短距离(D) 一个记录最短路径的最后一个结点(P) 其核心在于不断的判断越过中间…...

安装sqllab靶机之后,练习关卡报403 forbidden
解决办法: 在nginx的conf文件中添加上访问index.php vim /usr/local/nginx/conf/nginx.conf 保存退出 再重启一下nginx,就完成了。 ./nginx -s reload...

微信VX多开 免扫码 登录 互斥体 可视化 Exui v1.1 易语言源码附成品软件
UI设计: 1. EXUI界面库20240204 调用的模块: 1. wow64_hook_3.02.ec(压缩包内含) 2. 精易模块[v11.1.0].ec(自行下载) 更新日志: v1.1 2024年7月25日13:28:43 { 1. 有人反馈 设置了V…...

JavaEE 从入门到精通(一) ~ Maven
晚上好,愿这深深的夜色给你带来安宁,让温馨的夜晚抚平你一天的疲惫,美好的梦想在这个寂静的夜晚悄悄成长。 目录 前言 1.1 概念 什么是 Maven? Maven 的核心概念 1.2 maven依赖坐标 1.3 maven仓库 1.4 maven安装 1.5 mave…...

滚珠丝杆与丝杆支撑座:稳定性与精度的双重保障
丝杆支撑座是连接滚珠丝杆与电机的轴承,采用优质的轴承能确保支撑座与滚珠丝杆之间的刚性平衡。那么,滚珠丝杆搭连接杆支撑座有哪些优缺点呢? 正常情况下,丝杆支撑座能够提供稳定的支撑力,确保滚珠丝杆在复杂工况下保持…...
实验5-11 空心的数字金字塔
本题要求实现一个函数,输出n行空心的数字金字塔。 函数接口定义: void hollowPyramid( int n );其中n是用户传入的参数,为[1, 9]的正整数。要求函数按照如样例所示的格式打印出n行空心的数字金字塔,请注意,最后一行的…...

C#对象和类型
属性、方法、字段 字段和属性的区别 在C#中,字段(fields)和属性(properties)都是类的成员,它们提供了类存储数据的方式,但它们在用途和功能上有着明显的区别。 字段 字段通常用来存储类…...

免费分享一套SpringBoot+Vue图书(图书借阅)管理系统【论文+源码+SQL脚本】,帅呆了~~
大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue图书(图书借阅)管理系统,分享下哈。 项目视频演示 【免费】SpringBootVue图书(图书借阅)管理系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 本论文阐述了一套先进的图书管理系…...

数据结构与算法--队列
文章目录 提要队列的定义队列的认识队列的应用队列的抽象数据类型队列的存储结构队列的链式存储结构与实现链队的进队和出队操作链队的数据类型初始化链队列入队操作出队操作队列的顺序存储结构与实现顺序队列的假溢出问题队列上溢循环队列循环队列取下一相邻单元下标运算队满与…...

<Qt> 常用控件
目录 一、控件概述 二、QWidget 核心属性 (一)QWidget的核心属性概览 1. enabled 2. geometry 3. WindowFrame的影响 4. windowTitle 5. window Icon 6. windowOpacity 7. cursor 8. font 9. toolTip 10. focusPolicy 11. styleSheet 三、…...
关于C/C++的编译、构建、CMake、x86_amd64等问题(自用)
被这些玩意整红温了 编译器版本 x86:编译器为x86版本,输出文件为x86。amd64_x86:编译器为amd64版本,输出文件为x86。amd64:编译器为amd64版本,输出文件为amd64。x86_amd64:编译器为x86版本&am…...

【设计模式】工厂模式详解
1.简介 工厂模式是一种创建型设计模式,通过提供一个接口或抽象类来创建对象,而不是直接实例化对象。工厂模式的主要思想是将对象的创建与使用分离,使得创建对象的过程更加灵活和可扩展。 工厂模式主要包括以下角色: 抽象工厂&a…...

【Spring Boot】用 Spring Security 实现后台登录及权限认证功能
用 Spring Security 实现后台登录及权限认证功能 1.引入依赖2.创建权限开放的页面3.创建需要权限验证的页面4.配置 Spring Security4.1 配置 Spring MVC4.2 配置 Spring Security 5.创建登录页面6.测试权限 1.引入依赖 使用前需要引入相关依赖,见以下代码ÿ…...

PHP开发【石头剪刀布小游戏】
石头剪刀布小游戏 玩法超级简单,你只需要在下面选择石头、剪刀或者布,然后提交,系统就会随机生成电脑的选择,告诉你最终的结果哦! 游戏规则: 如果你的选择和电脑一样,那么就是平局。如果你赢…...

(leetcode学习)42. 接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表…...
Python编程实例2
一、通过用户输入数字计算阶乘 # 获取用户输入的数字 num int(input("请输入一个数字: ")) factorial 1 # 查看数字是负数,0 或 正数 if num < 0:print("抱歉,负数没有阶乘") elif num 0:print("0 的阶乘为 1") e…...

排序算法:堆排序,golang实现
目录 前言 堆排序 代码示例 1. 算法包 2. 堆排序代码 3. 模拟程序 4. 运行程序 5. 从大到小排序 堆排序的思想 堆排序的实现逻辑 1. 构建最大堆 2. 排序 循环次数测试 假如 10 条数据进行排序 假如 20 条数据进行排序 假如 30 条数据进行排序 假设 5000 条数据…...

【网络安全入门】学习网络安全必须知道的77个网络基础知识
1、TCP/IP 协议的四层模型(网络接口层、网络层、传输层、应用层) TCP/IP 协议是互联网通信的基础,四层模型中,网络接口层负责与物理网络的连接;网络层主要处理 IP 数据包的路由和转发;传输层提供端到端的可…...

limit 以及分页 SQL 语句
目录 1. 作用 2. 演示 3. 分页 SQL 语句 1. 作用 获取结果集的一部分; 2. 演示 (1)如下,获取表的前三行; (2)只有一个数字,默认从 0 开始; (3&#x…...
mysql8.0规范
MySQL 数据库开发规范 目录 背景与目标规范列表 1. 库表设计 1.1 必须字段1.2 命名规范 2. 定义规范 2.1 约束规范2.2 类型规范 2.2.1 字段类型与长度2.2.2 状态字段数据类型2.2.3 布尔型2.2.4 varchar和text, json2.2.5 decimal(m,d) 3. 索引规范4. 其他规范5. SQL 使用 5.…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...