当前位置: 首页 > news >正文

YOLOv8添加注意力模块并测试和训练

YOLOv8添加注意力模块并测试和训练

参考bilibili视频

yolov8代码库中写好了注意力模块,但是yolov8的yaml文件中并没用使用它,如下图的通道注意力和空间注意力以及两者的结合CBAM,打开conv.py文件可以看到,其中包含了各种卷积块的定义,因此yolov8是把通道注意力和空间注意力以及两者的结合CBAM当作卷积块来处理:
在这里插入图片描述

在这里插入图片描述

2 逐层写入自定义的注意力模块

(1)ultralytics/nn/modules/conv.py中写入自定义的注意力模块:
在这里插入图片描述

(2)ultralytics/nn/modules/init.py中添加自定义的注意力模块名:
在这里插入图片描述
在这里插入图片描述
只有逐层添加模块名,才能封装成ultralytics.nn.modules的内部模块
(3)ultralytics/nn/tasks.py中添加自定义的注意力模块名,以便任务执行时调用自定义的注意力模块。
在这里插入图片描述
接着在ultralytics/nn/tasks.py–>parse_model函数中解析yaml文件时,判断是否有自定义的注意力模块:
在这里插入图片描述

由于CBAM可以看成只是给卷积块Conv加权重,并不会改变输入、输出通道数,因此可以仿照Conv块的处理,在下面判断的语句中它只会执行以下几句:

c1,c2为输入输出通道数,if 后面的语句是的作用是除了最后一层类别输出通道数,其它层的通道数都要是8的整数倍。args存放了c1,c2和args[1]之后的所有参数组成新的args,需要注意,args至少要两个元素,如果只有一个元素,agrs[1:]时会报错超出范围,因此模型的yaml文件中args位置,必须至少2个元素,如:
在这里插入图片描述

- [-1, 3, CBAM, [1024, 7]]	# 输入1024个通道数,kenel size=7

3 修改模型的yaml文件

在ultralytics/cfg/models/v8中复制一个yolov8-seg.yaml文件新建yaml文件命名为yolov8CBAM-seg.yaml:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]     #-->2- [-1, 1, CBAM, [128, 7]] #CBAM 3- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8-->4- [-1, 6, C2f, [256, True]]- [-1, 1, CBAM, [256, 7]]   #CBAM 6- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16-->7- [-1, 6, C2f, [512, True]]- [-1, 1, CBAM, [512, 7]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32-->10- [-1, 3, C2f, [1024, True]]- [-1, 1, CBAM, [1024, 7]]- [-1, 1, SPPF, [1024, 5]] # 9-->13# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 8], 1, Concat, [1]] #[[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12    -->16- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 5], 1, Concat, [1]] #[[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)--->19- [-1, 1, Conv, [256, 3, 2]]- [[-1, 16], 1, Concat, [1]]  #[[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)-->22- [-1, 1, Conv, [512, 3, 2]]- [[-1, 13], 1, Concat, [1]] #[[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)--->25#  - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)- [[19, 22, 25], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)

这里在主干backbone中的c2f块后面添加了重复一次的CBAM共添加了四个。由于head层需要Concat backbone的相应层,因此,原来的层序号需要逐一修改,注释中 " -->x "表示新的序号,将原来的序号替换成新的即可。

4 测试是否修改成功

复制一份tests/test_python.py文件中的测试代码,新建文件命名为test_yolov8_CBAM_model.py,只保留下方代码:

# Ultralytics YOLO 🚀, AGPL-3.0 licenseimport contextlib
import urllib
from copy import copy
from pathlib import Pathimport cv2
import numpy as np
import pytest
import torch
import yaml
from PIL import Imagefrom tests import CFG, IS_TMP_WRITEABLE, MODEL, SOURCE, TMP
from ultralytics import RTDETR, YOLO
from ultralytics.cfg import MODELS, TASK2DATA, TASKS
from ultralytics.data.build import load_inference_source
from ultralytics.utils import (ASSETS,DEFAULT_CFG,DEFAULT_CFG_PATH,LOGGER,ONLINE,ROOT,WEIGHTS_DIR,WINDOWS,checks,
)
from ultralytics.utils.downloads import download
from ultralytics.utils.torch_utils import TORCH_1_9CFG = 'ultralytics/cfg/models/v8/yolov8l-CBAMseg.yaml'	#使用l模型加一个l字母
SOURCE = ASSETS / "bus.jpg"
def test_model_forward():"""Test the forward pass of the YOLO model."""model = YOLO(CFG)model(source=SOURCE, imgsz=[512,512], augment=True)  # also test no source and augment

先在ultralytics/nn/tasks.py的parse_model函数中增加一行代码用于查看模型结构:

print(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}")

在这里插入图片描述

运行test_yolov8_CBAM_model.py的结果如下:

============================= test session starts ==============================
collected 1 item                                                               test_yolov8_CBAM_model.py::test_model_forward PASSED                     [100%]  0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]                 1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]           3                  -1  1     16610  ultralytics.nn.modules.conv.CBAM             [128, 7]                      4                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              5                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]           6                  -1  1     65890  ultralytics.nn.modules.conv.CBAM             [256, 7]                      7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]              8                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]           9                  -1  1    262754  ultralytics.nn.modules.conv.CBAM             [512, 7]                      10                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              11                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]           12                  -1  1    262754  ultralytics.nn.modules.conv.CBAM             [512, 7]                      13                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          15             [-1, 8]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           16                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]                17                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          18             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           19                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]                 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              21            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           22                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]                 23                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              24            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           25                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]                26        [19, 22, 25]  1   7950688  ultralytics.nn.modules.head.Segment          [80, 32, 256, [256, 512, 512]]image 1/1 /XXXXXXXXXXXXXXXXX/ultralyticsv8_2-main/ultralytics/assets/bus.jpg: 640x480 (no detections), 116.5ms
Speed: 2.7ms preprocess, 116.5ms inference, 0.7ms postprocess per image at shape (1, 3, 640, 480)======================== 1 passed, 4 warnings in 7.04s =========================进程已结束,退出代码0

至此,注意力模块添加完成。

5 训练

在这里插入图片描述
如上图,这里使用x超大模型,只需yolov8-CBAMseg.yaml中加一个x变成yolov8x-CBAMseg.yaml,优化器为上一篇博客yolov8更改的Lion优化器。可以看到arguments参数按照x模型发生了调整,模型开始训练。
在这里插入图片描述

相关文章:

YOLOv8添加注意力模块并测试和训练

YOLOv8添加注意力模块并测试和训练 参考bilibili视频 yolov8代码库中写好了注意力模块&#xff0c;但是yolov8的yaml文件中并没用使用它&#xff0c;如下图的通道注意力和空间注意力以及两者的结合CBAM&#xff0c;打开conv.py文件可以看到&#xff0c;其中包含了各种卷积块的…...

「Unity3D」自动布局LayoutElement、ContentSizeFitter、AspectRatioFitter、GridLayoutGroup

布局元素与布局控制器 布局元素实现ILayoutElement接口&#xff0c;布局控制器实现ILayoutController接口&#xff0c;后者根据前者的属性控制具体布局——有些布局控制器也是布局元素&#xff0c;即同时实现这两个接口&#xff0c;如LayoutGroup。 public interface ILayout…...

【Golang 面试 - 进阶题】每日 3 题(十六)

✍个人博客&#xff1a;Pandaconda-CSDN博客 &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/UWz06 &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 Golang 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞&#x1f44d;收藏…...

Redis2

为什么Redis要给缓存数据设置过期时间&#xff1f; 内存是有限的&#xff0c;如果缓存中的所有数据都是一直保存&#xff0c;很容易OOM Redis如何判断数据是否过期&#xff1f; 通过过期字典来保存数据的过期时间 过期删除策略 Redis采用的是定期删除惰性删除 Redis内存淘…...

C语言--函数

1. 函数定义 语法&#xff1a; 类型标识符 函数名&#xff08;形式参数&#xff09; {函数体代码 } &#xff08;1&#xff09;类型标识符 --- 数据类型&#xff08;函数要带出的结果的类型&#xff09; 注&#xff1a;数组类型不能做函数返回结果的类型&#xff0c;如果函…...

Shell 编程的高级技巧和实战应用

第一步&#xff1a;高级函数和模块化设计 1.1 高级函数设计 探讨函数的参数处理和默认值设置。示例&#xff1a;实现一个可以处理可选参数的函数。 #!/bin/bashgreet() {local name${1:-"World"} # 如果没有提供参数&#xff0c;使用默认值 "World"ech…...

VMWare虚拟机如何连接U盘

检查配置 1&#xff09;Win R键&#xff0c;输入services.msc&#xff0c;打开服务。 2&#xff09;将AMware USB Arbitration Services 服务开启&#xff0c;并设置为自动启动&#xff1b; 连接U盘 目前作者了解有两种连接方式&#xff0c;如有其他连接方式&#xff0c;欢…...

【学习笔记】后缀自动机(SAM)

前言 之前对后缀自动机的理解太浅薄了&#xff0c;故打算重新写一篇。 后缀自动机是什么 后缀自动机是一个字符串的所有后缀建起来的自动机。它把所有子串&#xff08;后缀的前缀&#xff09;用 O ( n ) O(n) O(n) 的空间装了起来。后缀自动机的边会构成一个 D A G DAG DA…...

Godot的节点与场景

要深入的理解节点与场景&#xff0c;我们需要跳出这两个概念来看他。说的再直白一些godot本质就是一个场景编辑器&#xff01; 场景的概念应该在我们平时看电影看电视时会经常提到&#xff0c;比如某一个打斗的场景&#xff0c;这个场景可能会被设在某一个街道&#xff0c;那么…...

C++ 学习(2) ---- std::cout 格式化输出

目录 std::cout 格式化输出简介使用成员函数使用流操作算子 std::cout 格式化输出简介 C 通常使用cout输出数据&#xff0c;和printf()函数相比&#xff0c;cout实现格式化输出数据的方式更加多样化&#xff1b; 一方面&#xff0c;cout 作为 ostream 类的对象&#xff0c;该类…...

前端拿不到Long类型成员变量,用@JsonSerialize(using = ToStringSerializer.class)序列化一下

EqualsAndHashCode(callSuper true) Data TableName("la_school_business") Schema(description "商务负责人表") public class SchoolBusiness extends BaseEntity {private static final long serialVersionUID -7124481085999629236L;/*** 商务负责人…...

JWT登录校验流程

jwt令牌的基本概念&#xff1a; 1. JWT&#xff08;JSON Web Token&#xff09; 定义&#xff1a;JWT 是一种开放标准&#xff08;RFC 7519&#xff09;&#xff0c;用于在各方之间作为 JSON 对象安全地传输信息。它可以被验证和信任&#xff0c;因为它是数字签名的。结构&am…...

yarn安装和部署

文章目录 概述安装部署1.构建项目2.测试3.清理构建目录 小结 概述 yarn是一个快速、可靠和安全的JavaScript包管理工具&#xff0c;由Facebook开发。它被设计用来替代npm&#xff08;Node Package Manager&#xff09;&#xff0c;尽管它与npm在很多方面兼容。yarn提供了以下一…...

Visual Studio的安装教程与使用方法

Visual Studio的安装教程与使用方法 一、Visual Studio的安装教程 1. 准备工作 确认系统要求&#xff1a; 在开始安装Visual Studio之前&#xff0c;请确保您的计算机满足Visual Studio的系统要求这。包括操作系统版本、内存、硬盘空间等。您可以在Visual Studio的官方网站…...

一键换装软件哪个好?6个换装工具让你秒变穿搭达人

#紫色跑道的city穿搭#火了&#xff0c;很多人都开始打卡各种紫色穿搭&#xff0c;展示自己的时尚态度。 但对于没有时间或金钱去精心搭配的我们来说&#xff0c;有没有一种更简单、更快捷的方式&#xff0c;让我们也能轻松跟上潮流呢&#xff1f; 当然有&#xff01;今天&…...

【EtherCAT】Windows+Visual Studio配置SOEM主站——源码配置

目录 一、准备工作 1. Visual Studio 2022 2. Npcap 1.79 3. SOEM源码 二、源码部署 1. 新建Visual Studio工程 2. 创建文件夹 3. 创建主函数 4. 复制源代码 5. 删除无关项 6. 将soem源码添加进工程 7. 添加soem头文件 8. 配置头文件路径 9. 配置静态库和静态库路…...

GPTPDF深度解析:开源文档处理技术全攻略

GPTPDF深度解析&#xff1a;开源文档处理技术全攻略 在数字化信息时代&#xff0c;PDF文件因其稳定性和跨平台兼容性&#xff0c;已成为学术交流、技术文档和电子书籍等领域的首选格式。然而&#xff0c;PDF文档的处理和内容提取一直是一个难题。随着人工智能技术的飞速发展&a…...

网络学习:应用层DNS域名解析协议

目录 一、简介 二、工作流程 一、简介 DNS( Domain Name System)是“域名系统”的英文缩写&#xff0c;是一种组织成域层次结构的计算机和网络服务命名系统&#xff0c;它用于TCP/IP网络&#xff0c;它所提供的服务是用来将主机名和域名转换为IP地址的工作。 同时,DNS…...

7.怎么配置一个axios来拦截前后端请求

首先创建一个axios.js文件 导入我们所需要的依赖 import axios from "axios"; import Element from element-ui import router from "./router"; 设置请求头和它的类型和地址 注意先注释这个url,还没有解决跨域问题,不然会出现跨域 // axios.defaults.…...

Day17_1--AJAX学习之GET/POST传参

AJAX 简介 AJAX 是一种在无需重新加载整个网页的情况下&#xff0c;能够更新部分网页的技术。其实AJAX就可以理解为就是JS。通过AJAX也就实现了前后端分离&#xff0c;前端只写页面&#xff0c;后端生成数据&#xff01; 现在开始通过实例学习&#xff1a; 1--GET传参 <!…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响&#xff0c;推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下&#xff0c;基于神经血管耦合现象的多模态神经影像方法&#xff0c;通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里&#xff0c;本研…...