当前位置: 首页 > news >正文

代码随想录算法训练营day32 | 509. 斐波那契数 、70. 爬楼梯 、746. 使用最小花费爬楼梯

碎碎念:开始动态规划了!加油!
参考:代码随想录

动态规划理论基础

动态规划常见类型:

  1. 动规基础类题目
  2. 背包问题
  3. 打家劫舍
  4. 股票问题
  5. 子序列问题

解决动态规划问题应该要思考清楚的:
动态规划五部曲:

  1. dp数组以及它下标的含义
  2. 递推公式
  3. dp数组如何初始化
  4. 遍历顺序
  5. 打印dp数组

509. 斐波那契数

题目链接

509. 斐波那契数

思想

动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i] 第i个斐波那契数
  2. 确定递推公式:dp[i] = dp[i-1]+dp[i-2]
  3. dp数组的初始化:dp[0]=1 dp[1]=1
  4. 确定遍历顺序:从前向后遍历
  5. 打印dp数组:主要用来debug

由于求一个值只依赖前两个值,所以我们没必要维护一个数组,可以维护三个变量来完成状态转移。见python代码。

题解

// cpp
class Solution {
public:int fib(int n) {if (n == 0 || n == 1) return n;vector<int> dp(n+1);dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++) {dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};
# python
class Solution:def fib(self, n: int) -> int:if n <= 1:return nprev1, prev2 = 0, 1for _ in range(2, n+1):cur = prev1 + prev2prev1, prev2 = prev2, curreturn prev2

反思

本题简单,是因为题中已经给出了递推公式和初始值。

70. 爬楼梯

题目链接

70. 爬楼梯

思想

动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i] 表示达到i阶梯有dp[i]种方法
  2. 确定递推公式:dp[i] = dp[i-1]+dp[i-2] 爬到第i阶时,要么是从i-1一步过来的,要么从i-2一步迈两阶过来的
  3. dp数组的初始化:dp[0]=0 dp[1]=1(dp[0]的取法主要是为了使得dp[2]为2,从含义上来说,到达0阶应该0种方法)也可以初始化dp[1]=1,dp[2]=2,不初始化dp[0]
  4. 确定遍历顺序:从前向后遍历
  5. 打印dp数组:主要用来debug

和上一题同理,也可以优化掉dp数组。

题解

// cpp
class Solution {
public:int climbStairs(int n) {if (n <= 1) return n;vector<int> dp(n+1);dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};
# python
class Solution:def climbStairs(self, n: int) -> int:if n <= 1:return nprev1 = 1prev2 = 2for _ in range(3, n + 1):cur = prev1 + prev2prev1, prev2 = prev2, curreturn prev2

反思

注意初始化那部分。

746. 使用最小花费爬楼梯

题目链接

746. 使用最小花费爬楼梯

思想

注意站在某个位置不花费cost,要爬上台阶的时候才会花费cost。
如图所示,顶楼应该在3的位置。
在这里插入图片描述
动态规划五部曲:

  1. 确定dp数组以及下标的含义:dp[i] 表示达到下标i的位置所需要的最小花费
  2. 确定递推公式:dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2])
  3. dp数组的初始化:dp[0]=0 dp[1]=0
  4. 确定遍历顺序:从前向后遍历
  5. 打印dp数组:主要用来debug

和上一题同理,也可以优化掉dp数组。

题解

// cpp
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {vector<int> dp(cost.size() + 1);dp[0] = 0;dp[1] = 0;for (int i = 2; i <= cost.size(); i++) {dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.size()];}
};
# python
class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:prev1 = 0prev2 = 0for i in range(2, len(cost) + 1):cur = min(prev1 + cost[i - 2], prev2 + cost[i - 1])prev1, prev2 = prev2, curreturn prev2

反思

相关文章:

代码随想录算法训练营day32 | 509. 斐波那契数 、70. 爬楼梯 、746. 使用最小花费爬楼梯

碎碎念&#xff1a;开始动态规划了&#xff01;加油&#xff01; 参考&#xff1a;代码随想录 动态规划理论基础 动态规划常见类型&#xff1a; 动规基础类题目背包问题打家劫舍股票问题子序列问题 解决动态规划问题应该要思考清楚的&#xff1a; 动态规划五部曲&#xff1…...

【人工智能专栏】Learning Rate Decay 学习率衰减

Learning Rate Decay 学习率衰减 使用格式 optimizer = torch.optim.SGD(model.paraters(), lr=0.1, momentum=0.9, weight_decay=1e-4) scheduler = torch.optim...

浙大版《C语言程序设计(第3版)》题目集

练习4-11 统计素数并求和 本题要求统计给定整数M和N区间内素数的个数并对它们求和。 输入格式: 输入在一行中给出两个正整数M和N&#xff08;1≤M≤N≤500&#xff09;。 输出格式: 在一行中顺序输出M和N区间内素数的个数以及它们的和&#xff0c;数字间以空格分隔。 输入…...

【学习笔记】Day 2

一、进度概述 1、inversionnet_train_light 试运行——未成功 2、DL-FWI基础入门培训-1,2&#xff0c;以及作业1的完成——暂未完成作业 二、详情 1、inversionnet_train_light 试运行 在补充完相关依赖后&#xff0c;运行仍有报错 产生原因&#xff1a;这个代码在当…...

Java中的Map(如果想知道Java中有关Map的知识点,那么只看这一篇就足够了!)

前言&#xff1a;在Java编程语言中&#xff0c;集合框架&#xff08;Collection Framework&#xff09;提供了一系列用于存储和操作数据的接口和类。其中&#xff0c;Map和Set是两个非常重要的接口&#xff0c;分别用于存储键值对和无重复元素的集合。 ✨✨✨这里是秋刀鱼不做梦…...

裸金属服务器详解

在云计算飞速发展的今天&#xff0c;裸金属服务器&#xff08;Bare Metal Server, BMS&#xff09;作为一种兼具传统物理服务器性能和虚拟化服务优势的计算资源&#xff0c;正逐渐成为企业和个人用户的重要选择。今天我们就来了解下关于裸金属服务器的定义、核心特点以及其在各…...

等待唤醒机制两种实现方法-阻塞队列

桌子上有面条-》吃货执行 桌子上没面条-》生产者制造执行 1、消费者等待 消费者先抢到CPU执行权&#xff0c;发现桌子上没有面条&#xff0c;于是变成等待wait状态&#xff0c;并释放CPU执行权&#xff0c;此时的CPU肯定会被厨师抢到&#xff0c;初始开始做面条&#xff0c;…...

数组项相加和 – 如何将 JavaScript 数组中的数字相加

JavaScript 中的数组是一个对象&#xff0c;它允许您在单个变量名称下存储多个值的有序集合&#xff0c;并以多种方式操作这些值。 在本文中&#xff0c;您将学习如何使用几种不同的方法计算给定数组中所有数字的总和。 具体来说&#xff0c;使用以下方法得到数组中所有数字的总…...

C#和S7-1200PLC S7.NET通信

1、一步步建立一个C#项目 一步步建立一个C#项目(连续读取S7-1200PLC数据)_s7协议批量读取-CSDN博客文章浏览阅读1.7k次,点赞2次,收藏4次。这篇博客作为C#的基础系列,和大家分享如何一步步建立一个C#项目完成对S7-1200PLC数据的连续读取。首先创建一个窗体应用。_s7协议批量…...

常用命令git branch

Git Branch 命令总结 列出分支 git branch&#xff1a;显示本地分支&#xff0c;当前分支会被标记。git branch -r&#xff1a;显示远程分支。git branch -a&#xff1a;显示所有本地和远程分支。 创建分支 git branch <branch_name>&#xff1a;创建一个新分支但不自…...

Android 制作系统签名

一、切换目录 cd build/target/product/security二、执行命令 1)将使用.pk8生成platform.priv.pem (.pem即可,文件名可随意修改)openssl pkcs8 -in platform.pk8 -inform DER -outform PEM -out platform.pem -nocrypt2)生成.p12,此时需输入两次密码,并且要记住 -name后所设置…...

C语言第13篇

1.下面程序是计算n个数的平均值,请填空.______ #include<stdio.h> void main( ) { int i,n; float x,avg0.0; scanf("%d",&n); for(i0;i<n;i) { scanf("%f",&x); avgavg______; } avg________; printf("avg%f\n",avg); } A) …...

基于FPGA的数字信号处理(22)--进位保存加法器(Carry Save Adder, CSA)

目录 1、拆解多个数的加法 2、进位保存加法器 3、CSA的优点和缺点 4、CSA电路的实现 文章总目录点这里&#xff1a;《基于FPGA的数字信号处理》专栏的导航与说明 1、拆解多个数的加法 考虑3个4bits数相加&#xff0c;10 4 7 21 的过程是这样的&#xff1a; 其中的红色数…...

idea使用free流程,2024idea、2023idea都可以安装免费使用

1.先到官网下载&#xff0c;这里选择win系统的&#xff0c;点击下图的.exe https://www.jetbrains.com/idea/download/?sectionwindows 2.下载好后基本上就是一直点击“下一步”到直到安装好&#xff0c;安装好后先打开软件后关闭退出 3.下载配配套资料 链接: https://pan.ba…...

设计模式 之 —— 抽象工厂模式

目录 什么是抽象工厂模式&#xff1f; 定义 特点 抽象工厂模式&#xff08;java代码示例&#xff09; 首先定义第一个接口 实现第一个接口的类 定义第二个接口 实现第二个接口的类 * 创建抽象工厂类 创建扩展了 AbstractFactory 的工厂类 饮料工厂 食物工厂 * 创建一个…...

计量经济学(十六)--一文读懂和学会医学统计学中的四种检验方法

1. 统计学是什么? 统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报…...

解析 C# Dictionary 代码

entries用于存储当前每个节点的数据&#xff0c;其中四个字段分别表示&#xff1a; hashCode&#xff1a;key对应的hash值next&#xff1a;处理hash冲突&#xff0c;可以理解为是一个链表结构&#xff0c;邻接表key&#xff1a;存储的keyvalue&#xff1a;存储的value bucket…...

如何利用人工智能提升工作效率

在当今这个信息爆炸的时代&#xff0c;我们每天都被大量的工作任务所困扰。然而&#xff0c;随着人工智能技术的不断发展&#xff0c;我们可以通过一些智能工具来提升我们的工作效率。在这篇文章中&#xff0c;我将分享一些关于如何利用人工智能提升工作效率的建议。 首先&…...

Linux驱动开发—Linux内核定时器概念和使用详解,实现基于定时器的字符驱动

文章目录 内核定时器概念在Linux驱动模块中使用定时器软定时器&#xff08;Soft Timers&#xff09;jiffies 含义高精度定时器&#xff08;High Resolution Timers&#xff09; 实现倒计时字符设备驱动 内核定时器概念 在 Linux 内核中&#xff0c;定时器是用来管理和调度延迟…...

mysql数据库:数据库,表和列的基本概念

mysql&#xff1a;数据库&#xff0c;表和列的基本概念以及导入和导出文件 数据库的概念和用途 数据库是一个有组织的数据集合&#xff0c;它们被存储在计算机上以便于管理和访问。数据库的主要目的是为了存储和管理数据&#xff0c;同时使数据能够被高效地访问、检索和更新。数…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)

漏洞概述 漏洞名称&#xff1a;Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号&#xff1a;CVE-2023-25194 CVSS评分&#xff1a;8.8 影响版本&#xff1a;Apache Kafka 2.3.0 - 3.3.2 修复版本&#xff1a;≥ 3.4.0 漏洞类型&#xff1a;反序列化导致的远程代…...