MATLAB中dmperm函数用法
目录
语法
说明
dmperm函数的功能是完成Dulmage-Mendelsohn 分解。
语法
p = dmperm(A)
[p,q,r,s,cc,rr] = dmperm(A)
说明
如果列 j 与行 i 匹配,p = dmperm(A) 得到的结果为向量 p,这样 p(j) = i,如果列 j 与其不匹配,得到的结果为零。如果 A 是具有完整结构秩的方阵,则 p 是最大匹配行置换并且 A(p,:) 包含非零对角线。A 的结构秩是 sprank(A) = sum(p>0)。
[p,q,r,s,cc,rr] = dmperm(A)(其中 A 无需是方阵或完整结构秩)计算 A 的 Dulmage-Mendelsohn 分解。p 和 q 分别是行和列置换向量,这样 A(p,q) 包含分块上三角。r 和 s 是索引向量,指示精细分解的块边界。cc 和 rr 是长度为 5 的向量,指示粗略分解的块边界。
C = A(p,q) 拆分为 4×4 组粗略块:
A11 A12 A13 A14
0 0 A23 A24
0 0 0 A34
0 0 0 A44
其中 A12、A23 和 A34 是具有非零对角线的方阵。A11 的列是不匹配的列,A44 的行是不匹配的行。这些块中的任何块都可以为空。
在粗略分解中,(i,j)th 块是 C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1)。如果 A 为方阵并且是非奇异结构,则 A23 = C。也就是说,所有其他粗略块都为 0×0。
对于线性方程组,
-
[A11 A12] 是方程组的欠定部分,它始终是列数多于行数的矩形或为 0×0。
-
A23 是方程组的确定部分,它始终为方形。A23 子矩阵通过精细分解(A23 的强连通分量)进一步细分为分块上三角矩形。
-
[A34; A44] 是方程组的超定部分,它始终是行数比列数多的矩形或为 0×0。
A 的结构秩是 sprank(A) = rr(4)-1,这是 A 数值秩的上限。在精确算术运算中,概率为 1 的情况下 sprank(A) = rank(full(sprand(A)))。
C(r(i):r(i+1)-1,s(j):s(j+1)-1) 是精细分解的第 (i,j) 块。(1,1) 块是矩形块 [A11 A12],除非该块为 0×0。(b,b) 块是矩形块 [A34 ; A44],除非该块为 0×0,其中 b = length(r)-1。C(r(i):r(i+1)-1,s(i):s(i+1)-1) 形式的其他所有块是 A23 的对角线块,并且是具有非零对角线的方阵。
提示
-
如果 A 是可约矩阵,可以将 A 置换为带有不可约对角块的分块上三角矩阵,然后执行分块回代,进而对线性方程组 Ax = b 求解。仅需要对已置换矩阵的对角块进行分解,节省对角线上方块中的填充量和算术运算。
-
从图形理论方面看,dmperm 在 A 的偶图中计算最大大小匹配,并且 A(p,q) 的对角块对应于该图形的强 Hall 分量。dmperm 的输出还可用于计算无向图或有向图的连通或强连通分量。有关详细信息,请参阅 Pothen-Fan [1]。
提示
-
如果 A 是可约矩阵,可以将 A 置换为带有不可约对角块的分块上三角矩阵,然后执行分块回代,进而对线性方程组 Ax = b 求解。仅需要对已置换矩阵的对角块进行分解,节省对角线上方块中的填充量和算术运算。
-
从图形理论方面看,dmperm 在 A 的偶图中计算最大大小匹配,并且 A(p,q) 的对角块对应于该图形的强 Hall 分量。dmperm 的输出还可用于计算无向图或有向图的连通或强连通分量。
相关文章:
MATLAB中dmperm函数用法
目录 语法 说明 dmperm函数的功能是完成Dulmage-Mendelsohn 分解。 语法 p dmperm(A) [p,q,r,s,cc,rr] dmperm(A) 说明 如果列 j 与行 i 匹配,p dmperm(A) 得到的结果为向量 p,这样 p(j) i,如果列 j 与其不匹配,得到的结…...

苹果折叠屏设备:创新设计与技术突破
本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”或扫描文章底部二维码关注,和我一起每天进步一点点 苹果折叠屏设备:创新设计与技术突破 在科技迅速发展的今天,苹果公司以其一贯的创新精神和对产品质量的严格把控&#x…...

C#加班统计次数
C#加班统计次数 运行环境:vs2022 .net 8.0 社区版 1、用C#语言;2、有界面上传Excel文件; 3、对Excel列(部门、人员姓名、人员编号、考勤时间 )处理:(1)按人员编号、考勤日期分组且保留原来字段&…...

【资治通鉴】“ 将欲取之、必先予之 “ 策略 ① ( 魏桓子 割让土地 | 资治通鉴原文分析 | 道德经、周书、吕氏春秋、六韬 中的相似策略 )
文章目录 一、" 将欲取之、必先予之 " 策略1、魏桓子 割让土地2、资治通鉴原文分析 二、" 将欲取之、必先予之 " 类似的原理1、将欲败之,必姑辅之;将欲取之,必姑与之 - 周书2、将欲歙之,必固张之,…...

Spring5 的日志学习
我们在使用 Spring5 的过程中会出现这样的现像,就是 Spring5 内部代码打印的日志和我们自己的业务代码打印日志使用的不是统一日志实现,尤其是在项目启动的时候,Spring5 的内部日志使用的是 log4j2,但是业务代码打印使用的可能是 …...

python爬虫实践
两个python程序的小实验(附带源码) 题目1 爬取http://www.gaosan.com/gaokao/196075.html 中国大学排名,并输出。提示:使用requests库获取页面的基本操作获取该页面,运用BeautifulSoup解析该页面绑定对象soup&#x…...
【前端面试】七、算法-数组展平
目录 1.判断数组 2.二维数组展平 3.多维数组展平 1.判断数组 // 判断数组console.log([].constructor Array);console.log( Array.isArray([]));console.log( [] instanceof Array);console.log(Object.prototype.toString.call([]) [object Array]); 2.二维数组展平 const…...
Laravel php框架与Yii php 框架的优缺点
Laravel和Yii都是流行的PHP框架,它们各自具有独特的优点和缺点。以下是对这两个框架优缺点的详细分析: Laravel PHP框架的优缺点 优点 1、设计思想先进:Laravel的设计思想非常先进,非常适合应用各种开发模式,如TDD&…...

使用 addRouteMiddleware 动态添加中间
title: 使用 addRouteMiddleware 动态添加中间 date: 2024/8/4 updated: 2024/8/4 author: cmdragon excerpt: 摘要:文章介绍了Nuxt3中addRouteMiddleware的使用方法,该功能允许开发者动态添加路由中间件,以实现诸如权限检查、动态重定向及…...

Zookeeper未授权访问漏洞
Zookeeper未授权访问漏洞 Zookeeper是分布式协同管理工具,常用来管理系统配置信息,提供分布式协同服务。Zookeeper的默认开放端口是 2181。Zookeeper安装部署之后默认情况下不需要任何身份验证,造成攻击者可以远程利用Zookeeper,…...

【JavaEE】定时器
目录 前言 什么是定时器 如何使用java中的定时器 实现计时器 实现MyTimeTask类 Time类中存储任务的数据结构 实现Timer中的schedule方法 实现MyTimer中的构造方法 处理构造方法中出现的线程安全问题 完整代码 考虑在限时等待wait中能否用sleep替换 能否用PriorityBlo…...

2024带你轻松玩转Parallels Desktop19虚拟机!让你在Mac电脑上运行Windows系统
大家好,今天我要给大家安利一款神奇的软件——Parallels Desktop 19虚拟机。这款软件不仅可以让你在Mac电脑上运行Windows系统,还能轻松切换两个操作系统之间的文件和应用程序,让你的工作效率翻倍! 让我来介绍一下Parallels Desk…...
【算法】递归实现二分查找(优化)以及非递归实现二分查找
递归实现二分查找 思路分析 1.首先确定该数组中间的下标 mid (left right) / 2; 2.然后让需要查找的数 findVal 和 arr[mid] 比较 findVal > arr[mid],说明要查找的数在 arr[mid] 右边,需要向右递归findVal < arr[mid],说明要查…...
CDN 是什么?
CDN是一种分布式网络服务,通过将内容存储在分布式的服务器上,使用户可以从距离较近的服务器获取所需的内容,从而加速互联网上的内容传输。 就近访问:CDN 在全球范围内部署了多个服务器节点,用户的请求会被路由到距离最…...

索引:SpringCloudAlibaba分布式组件全部框架笔记
索引:SpringCloudAlibaba分布式组件全部框架笔记 一推荐一套分布式微服务的版本管理父工程pom模板:Springcloud、SpringCloudAlibaba、Springboot二SpringBoot、SpringCloud、SpringCloudAlibaba等各种组件的版本匹配图:三SpringBoot 3.x.x版…...

2024第五届华数杯数学建模竞赛C题思路+代码
目录 原题背景背景分析 问题一原题思路Step1:数据读取与处理Step2:计算最高评分(Best Score, BS)Step3:统计各城市的最高评分(BS)景点数量 程序读取数据数据预处理 问题二原题思路Step1: 定义评价指标Step2: 收集数据Step3: 标准化…...

FFmpeg源码:av_reduce函数分析
AVRational结构体和其相关的函数分析: FFmpeg有理数相关的源码:AVRational结构体和其相关的函数分析 FFmpeg源码:av_reduce函数分析 一、av_reduce函数的声明 av_reduce函数声明在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0…...

nginx: [error] open() “/run/nginx.pid“ failed (2: No such file or directory)
今天 准备访问下Nginx服务,但是 启动时出现如下报错:(80端口被占用,没有找到nginx.pid文件) 解决思路: 1、 查看下排查下nginx服务 #确认下nginx状态 ps -ef|grep nginx systemctl status nginx#查看端口…...

<数据集>BDD100K人车识别数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:15807张 标注数量(xml文件个数):15807 标注数量(txt文件个数):15807 标注类别数:7 标注类别名称: [pedestrian, car, bus, rider, motorcycle, truck, bicycle] 序号…...

利用SSE打造极简web聊天室
在B/S场景中,通常我们前端主动访问后端可以使用axios,效果很理想,而后端要访问前端则不能这样操作了,可以考虑SSE、websocket等方式,实时和性能均有保障。 下面给出一个简单的SSE例子,后端是nodeexpress&am…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...