当前位置: 首页 > news >正文

常用的图像增强操作

我们将介绍如何用PIL库实现一些简单的图像增强方法。

[!NOTE] 初始化配置

import numpy as np  
from PIL import Image, ImageOps, ImageEnhance  
import warningswarnings.filterwarnings('ignore')
IMAGE_SIZE = 640

[!important] 辅助函数
主要用于控制增强幅度

def int_parameter(level, maxval):  return int(level * maxval / 10)  def float_parameter(level, maxval):  return float(level) * maxval / 10.def sample_level(n):  return np.random.uniform(low=0.1, high=n)

level用于控制增强方法的数值强度,maxval一般取值为4,level是一个从均匀分布中采样的数值,这样让每次增强都具有随机性。

[!example] 增强方法

色彩反转

def invert(pil_img, _):  return ImageOps.invert(pil_img)

镜像

def mirror(pil_img, _):  return ImageOps.mirror(pil_img)

均衡化

def equalize(pil_img, _):  return ImageOps.equalize(pil_img)

色彩分离

def posterize(pil_img, level):  level = int_parameter(sample_level(level), 4)  return ImageOps.posterize(pil_img, 4 - level)

旋转

def rotate(pil_img, level):  degrees = int_parameter(sample_level(level), 30)  if np.random.uniform() > 0.5:  degrees = -degrees  return pil_img.rotate(degrees, resample=Image.BILINEAR)

Solarize

def solarize(pil_img, level):  level = int_parameter(sample_level(level), 256)  return ImageOps.solarize(pil_img, 256 - level)

Shear_x

def shear_x(pil_img, level):  level = float_parameter(sample_level(level), 0.3)  if np.random.uniform() > 0.5:  level = -level  return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE),  Image.AFFINE, (1, level, 0, 0, 1, 0),  resample=Image.BILINEAR)

Shear_y

def shear_y(pil_img, level):  level = float_parameter(sample_level(level), 0.3)  if np.random.uniform() > 0.5:  level = -level  return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE),  Image.AFFINE, (1, 0, 0, level, 1, 0),  resample=Image.BILINEAR)

Translate_x

def translate_x(pil_img, level):  level = int_parameter(sample_level(level), IMAGE_SIZE / 3)  if np.random.random() > 0.5:  level = -level  return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE),  Image.AFFINE, (1, 0, level, 0, 1, 0),  resample=Image.BILINEAR)  

Translate_y

def translate_y(pil_img, level):  level = int_parameter(sample_level(level), IMAGE_SIZE / 3)  if np.random.random() > 0.5:  level = -level  return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE),  Image.AFFINE, (1, 0, 0, 0, 1, level),  resample=Image.BILINEAR)  

Color

def color(pil_img, level):  level = float_parameter(sample_level(level), 1.8) + 0.1  return ImageEnhance.Color(pil_img).enhance(level)  

Contrast

def contrast(pil_img, level):  level = float_parameter(sample_level(level), 1.8) + 0.1  return ImageEnhance.Contrast(pil_img).enhance(level)  

AutoContrast

def autocontrast(pil_img, level):  level = float_parameter(sample_level(level), 10)  return ImageOps.autocontrast(pil_img, 10 - level)  

Brightness

def brightness(pil_img, level):  level = float_parameter(sample_level(level), 1.8) + 0.1  return ImageEnhance.Brightness(pil_img).enhance(level)  

Sharpness

def sharpness(pil_img, level):  level = float_parameter(sample_level(level), 1.8) + 0.1  return ImageEnhance.Sharpness(pil_img).enhance(level)

[!success] 使用案例

对于这样一张原图:

在这里插入图片描述

augmentations_all = {  "autocontrast":autocontrast,  "equalize":equalize,  "posterize":posterize,  "rotate":rotate,  "solarize":solarize,  "shear_x":shear_x,  "shear_y":shear_y,  "translate_x":translate_x,  "translate_y":translate_y,  "color":color,  "contrast":contrast,  "brightness":brightness,  "sharpness":sharpness,  "mirror":mirror,  "invert":invert  }  import matplotlib.pyplot as plt  img=Image.open(r"C:\Users\Administrator\Downloads\result1.5\result\original_resized\class0\0.jpg")  def draw(plt,idx,img,title):  plt.subplot(int("24"+str(idx)))  plt.imshow(img)  plt.xticks([])  plt.yticks([])  plt.title(title)  plt.figure(figsize=(20,16))  
for idx,(k,v) in enumerate(augmentations_all.items()):  draw(plt,(idx)%8+1,v(img.copy(),1),k)  if idx!=0 and idx % 7 == 0:  plt.show()  plt.figure(figsize=(20,16))

在这里插入图片描述
在这里插入图片描述

相关文章:

常用的图像增强操作

我们将介绍如何用PIL库实现一些简单的图像增强方法。 [!NOTE] 初始化配置 import numpy as np from PIL import Image, ImageOps, ImageEnhance import warningswarnings.filterwarnings(ignore) IMAGE_SIZE 640[!important] 辅助函数 主要用于控制增强幅度 def int_param…...

探索TinyDB的轻量级魅力:Python中的微型数据库

文章目录 探索TinyDB的轻量级魅力:Python中的微型数据库背景:为何选择TinyDB?什么是TinyDB?如何安装TinyDB?5个简单的库函数使用方法3个场景下的应用实例常见问题与解决方案总结 探索TinyDB的轻量级魅力:Py…...

模型优化学习笔记—Adam算法

首先复习一下: 动量梯度下降: 1、算出dw、db 2、计算指数加权(移动)平均 vdw k *vdw (1-k)*dw vdb k *vdb (1-k)*db 3、梯度下降 w w - r*vdw b b - r*vdb RMSprop: 1、算出dw和db 2、算指数平均值&am…...

车辆出险报告(h5)-车辆出险记录接口-车辆相关接口

接口简介:通过vin及行驶证查询车辆出险、理赔、事故记录接口。查询成功率99%,返回URL地址的查询报告。 不能对返回的报告进行任何的修改,否则由用户自行承担相应的责任 报告结果只保留30天,如需永久保存,请您查询后自行保存 接口地…...

C基础项目(学生成绩管理系统)

目录 一、项目要求 二、完整代码实例 三、分文件编写代码实例 一、项目要求 1.系统运行,打开如下界面。列出系统帮助菜单(即命令菜单),提示输入命令 2.开始时还没有录入成绩,所以输入命令 L 也无法列出成绩。应提…...

C# 设计模式之原型模式

总目录 前言 在软件系统中,当创建一个类的实例的过程很昂贵或很复杂,并且我们需要创建多个这样类的实例时,如果我们用new操作符去创建这样的类实例,这未免会增加创建类的复杂度和耗费更多的内存空间,因为这样在内存中…...

美林数据Tempo Talents | 两大资源中心,打造开放、成长型数智人才能力平台

在数字化时代的大潮中,高校作为知识与人才培养的重要阵地,独立分散的课程资源管理方式已无法满足现代教育的需求,而数据资源的分散和碎片化也阻碍了科研和教学工作的深入进行。那么,高校如何打造一个集中、高效的课程与数据资源中…...

IDC权威认可!工业领域最佳实践案例!

近日,IDC发布了《工业领域中数据管理分析服务最佳实践案例》报告,总结行业用户在应用过程中面临的主要挑战和实践路径,并评选最佳实践案例,为行业用户提供了相关的指导建议,供市场参考。星环科技中航电梯数据中台项目入…...

未授权访问漏洞系列详解①!

Redis未授权访问漏洞 Redis 默认情况下,会绑定在 0.0.0.0:6379 ,如果没有进行采用相关的策略,比如添加防火墙规则避免其他非信任来源 ip 访问等,这样将会将 Redis 服务暴露到公网上,如果在没有设置密码认证(一般为空)的…...

第1天:Python基础语法(五)

正文: 在之前的文章中,我们已经学习了Python的基本语法集合和集合的一些常用操作。 在本篇文章中,我们将继续学习其他类型 字符串格式化 使用操作符%s来实现 ➢ 几个%s就几个变量 ➢ 超过一个变量时,需要用元组%(…...

【c++】用C++制作一个简易windows系统

源码&#xff1a; #include <iostream> #include <cstdlib> // 为了使用system #include<limits> void clearScreen() {system("cls"); }void displayMenu() {clearScreen();std::cout << "1.我的文件" << std::endl;std::…...

常见锁策略

目录 1.乐观锁/悲观锁 2.重量级锁/轻量级锁&#xff08;轻量重量是站在加锁开销的角度&#xff09; 3.挂起等待锁/自旋锁 4.公平锁/非公平锁 5.可重入锁与不可重入锁 6.读写锁 synchronized 面试题&#xff1a;是什么偏向锁&#xff1f; 锁的升级&#xff1a; 锁消除&…...

【机器学习】人工神经网络优化方法及正则化技术

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 人工神经网络优化方法及正则化技术1. 引言2. 神经网络优化的基础2.1 损失函数2.…...

Django异步请求和后台管理实战

项目概述 项目实现Ajax异步请求局部刷新使用XAdmin后台模板提供图片上传接口在明细页应用了富文本编辑器在加载图书信息的时候使用LazyLoad&#xff08;图片懒加载&#xff09; # 环境 asgiref3.7.2 crispy-bootstrap32024.1 defusedxml0.7.1 diff-match-patch20230430 Djang…...

大奖放送 | AI编程达人秀视频文章征集大赛来啦!

AI Coding&#xff0c;可以有多少种打开玩法&#xff1f;腾讯云AI代码助手是一款辅助编码工具&#xff0c;基于混元大模型&#xff0c;提供技术对话、代码补全、代码诊断和优化等能力&#xff0c;为你生成优质代码&#xff0c;帮你解决技术难题&#xff0c;提升编码效率。 我…...

最新小猫咪PHP加密系统源码V1.4_本地API接口_带后台

小猫咪PHP加密系统历时半年&#xff0c;它再一次迎来更新&#xff0c;更新加密算法&#xff08;这应该是最后一次更新加密算法了&#xff0c;以后主要更新都在框架功能上面了&#xff09;&#xff0c;适配php56-php74&#xff0c;取消批量加密&#xff08;一些不可控因素&#…...

a bag of bones

以下是根据你提供的内容制作的5道选择题&#xff0c;包括答案和解析&#xff1a; 1. 短语 "a bag of bones" 通常用来描述什么&#xff1f; - A. 一个恐怖片中的角色 - B. 一个非常瘦弱的人 - C. 一个懒惰的人 - D. 一个穿着比基尼的人 答案&#xff1a;B 解析&#…...

XLT高速线缆自动化测试系统

高速线缆自动化测试系统 随着高速通信的快速发展&#xff0c;对于高速数据通信线缆性能要求日益增高&#xff0c;在其硏发、生产阶段&#xff0c;需要多次测试射频性能。传统人工手动测试存在测试环境搭建复杂、测试效率低、耗时长&#xff0c;特别是多次测试中因为人工测试带…...

微软AI业务最新营收数据情况(2024年7月)

Azure AI 年度经常性收入 (ARR)&#xff1a;达到50亿美元客户数量&#xff1a;60,000家平均客户价值 (ACV) 中位数&#xff1a;83,000美元同比增长率&#xff1a;达到了惊人的900% GitHub Copilot 年度经常性收入 (ARR)&#xff1a;达到3亿美元客户数量&#xff1a;77,000家…...

canvas绘制表格

canvas绘制表格 最近在为公司产品做技术预研&#xff0c;经理让用canvas做一个表格&#xff0c;于是就有了这篇博客。 我们的数据是后端通过MQTT推送过来的 我在代码中也直接使用了 具体MQTT的实现代码&#xff0c;可见博客 在vue使用MQTT 在这里为了方便实用我直接封装成组件…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...