当前位置: 首页 > news >正文

简单分析Linux内核基础篇——initcall

写过Linux驱动的人都知道module_init宏,因为它声明了一个驱动的入口函数。

除了module_init宏,你会发现在Linux内核中有许多的驱动并没有使用module_init宏来声明入口函数,而是看到了许多诸如以下的声明:

static int __init qcom_iommu_init(void)
{int ret;ret = platform_driver_register(&qcom_iommu_ctx_driver);if (ret)return ret;ret = platform_driver_register(&qcom_iommu_driver);if (ret)platform_driver_unregister(&qcom_iommu_ctx_driver);return ret;
}
device_initcall(qcom_iommu_init);
static int __init ebsa110_init(void)
{arm_pm_idle = ebsa110_idle;return platform_add_devices(ebsa110_devices, ARRAY_SIZE(ebsa110_devices));
}arch_initcall(ebsa110_init);

上述举例的两个驱动入口分别使用了device_initcall()和arch_initcall()来声明驱动入口,这些本质上都是对initcall的调用,module_init也如此。

initcall等级

Linux内核对initcall进行了等级划分,每一种类型的initcall都有对应等级,等级0-7。

路径:include/init/init.h

/* initcalls are now grouped by functionality into separate * subsections. Ordering inside the subsections is determined* by link order. * For backwards compatibility, initcall() puts the call in * the device init subsection.** The `id' arg to __define_initcall() is needed so that multiple initcalls* can point at the same handler without causing duplicate-symbol build errors.*/#define __define_initcall(fn, id) \static initcall_t __initcall_##fn##id __used \__attribute__((__section__(".initcall" #id ".init"))) = fn; \LTO_REFERENCE_INITCALL(__initcall_##fn##id)

id越小等级越高,Linux会按照等级由高到低顺序执行:

/** Early initcalls run before initializing SMP.** Only for built-in code, not modules.*/
#define early_initcall(fn)  __define_initcall(fn, early)/** A "pure" initcall has no dependencies on anything else, and purely* initializes variables that couldn't be statically initialized.** This only exists for built-in code, not for modules.* Keep main.c:initcall_level_names[] in sync.*/
#define pure_initcall(fn)  __define_initcall(fn, 0)#define core_initcall(fn)  __define_initcall(fn, 1)
#define core_initcall_sync(fn)  __define_initcall(fn, 1s)
#define postcore_initcall(fn)  __define_initcall(fn, 2)
#define postcore_initcall_sync(fn) __define_initcall(fn, 2s)
#define arch_initcall(fn)  __define_initcall(fn, 3)
#define arch_initcall_sync(fn)  __define_initcall(fn, 3s)
#define subsys_initcall(fn)  __define_initcall(fn, 4)
#define subsys_initcall_sync(fn) __define_initcall(fn, 4s)
#define fs_initcall(fn)   __define_initcall(fn, 5)
#define fs_initcall_sync(fn)  __define_initcall(fn, 5s)
#define rootfs_initcall(fn)  __define_initcall(fn, rootfs)
#define device_initcall(fn)  __define_initcall(fn, 6)
#define device_initcall_sync(fn) __define_initcall(fn, 6s)
#define late_initcall(fn)  __define_initcall(fn, 7)
#define late_initcall_sync(fn)  __define_initcall(fn, 7s)#define __initcall(fn) device_initcall(fn)

这么做的目的主要是根据优先级依次对设备进行初始化,例如会先初始化与架构相关的,然后再初始化内核子系统。

资料直通车:Linux内核源码技术学习路线+视频教程内核源码

学习直通车:Linux内核源码内存调优文件系统进程管理设备驱动/网络协议栈

Linux对initcall的调用

在Linux启动时,会依次遍历所有等级的initcall,以完成一系列的初始化。

initcall的调用流程:

start_kernel->kernel_init->kernel_init_freeable->do_basic_setup->do_initcalls->do_initcall_level()

在do_initcalls()函数中,会遍历所有等级的initcall,完成初始化。

static void __init do_initcalls(void)
{int level;size_t len = strlen(saved_command_line) + 1;char *command_line;command_line = kzalloc(len, GFP_KERNEL);if (!command_line)panic("%s: Failed to allocate %zu bytes\n", __func__, len);//遍历所有等级的initcall,level变量对应等级for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++) {/* Parser modifies command_line, restore it each time */strcpy(command_line, saved_command_line);do_initcall_level(level, command_line);//执行该等级下的所有函数}kfree(command_line);
}

do_initcall_level()会执行对应等级下的所有函数:

static void __init do_initcall_level(int level, char *command_line)
{initcall_entry_t *fn;parse_args(initcall_level_names[level],command_line, __start___param,__stop___param - __start___param,level, level,NULL, ignore_unknown_bootoption);trace_initcall_level(initcall_level_names[level]);for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++)do_one_initcall(initcall_from_entry(fn));
}

module_init等级

module_init宏使用的是device_initcall,等级为6:

#define device_initcall(fn)  __define_initcall(fn, 6)
......
#define __initcall(fn) device_initcall(fn)
......
#define module_init(x) __initcall(x);

在一些内核驱动中,直接使用了device_initcall()来声明驱动入口,其效果与使用module_init是一样的。

 

 

相关文章:

简单分析Linux内核基础篇——initcall

写过Linux驱动的人都知道module_init宏&#xff0c;因为它声明了一个驱动的入口函数。 除了module_init宏&#xff0c;你会发现在Linux内核中有许多的驱动并没有使用module_init宏来声明入口函数&#xff0c;而是看到了许多诸如以下的声明&#xff1a; static int __init qco…...

硬件速攻-AT24CXX存储器

AT24C02是什么&#xff1f; AT24CXX是存储芯片&#xff0c;驱动方式为IIC协议 实物图&#xff1f; 引脚介绍&#xff1f; A0 地址设置角 可连接高电平或低电平 A1 地址设置角 可连接高电平或低电平 A2 地址设置角 可连接高电平或低电平 1010是设备前四位固定地址 &#xf…...

C# tuple元组详解

概念 本质就是个数据结构&#xff0c;它是将多个数据元素分组成一个轻型数据结构。 如何声明元组变量&#xff08;针对.net framework 4.7 和 .net core 2.0) 不带字段名称元组 ## t1就是个变量 它的类型是元组类型 ## 左侧括号定义的是参数列表 等于号右侧就是个t1赋值 #…...

1、Linux初级——linux命令

下载镜像&#xff1a;http://cn.ubuntu.com/dowload 一、基本命令 1、alias&#xff08;给命令取别名&#xff09; 例如&#xff1a;alias clls -la&#xff08;只是临时的&#xff09; 2、配置文件$ vim ~/.bashrc $ vim ~/.bashrc // 使用vim打开配置文件 (1)在配置文件…...

ChatGPT助力校招----面试问题分享(四)

1 ChatGPT每日一题&#xff1a;电阻如何选型 问题&#xff1a;电阻如何选型 ChatGPT&#xff1a;电阻的选型通常需要考虑以下几个方面&#xff1a; 额定功率&#xff1a;电阻的额定功率是指电阻能够承受的最大功率。在选型时&#xff0c;需要根据电路中所需要的功率确定所选…...

【设计模式】创建型设计模式

文章目录1. 基础①如何学习设计模式② 类模型③ 类关系2. 设计原则3. 模板方法① 定义②背景③ 要点④ 本质⑤ 结构图⑥ 样例代码4. 观察者模式① 定义②背景③ 要点④ 本质⑤ 结构图⑥ 样例代码5. 策略模式① 定义②背景③ 要点④ 本质⑤ 结构图⑥ 样例代码1. 基础 ①如何学习…...

Linux 信号(signal):信号的理解

目录一、理解信号1.信号是什么2.信号的种类二、简单理解信号的生命周期一、理解信号 1.信号是什么 Linux中的信号其实和日常生活中的信号还是挺像的&#xff0c;LInux中的信号是一种事件通知机制&#xff0c;通知进程发生了某个事件。进程接收到信号后&#xff0c;就会中断当前…...

Vulnhub项目:Web Machine(N7)

靶机地址&#xff1a;Web Machine(N7)渗透过程&#xff1a;kali ip&#xff1a;192.168.56.104&#xff0c;靶机ip&#xff0c;使用arp-scan进行查看靶机地址&#xff1a;192.168.56.128收集靶机开放端口&#xff1a;nmap -sS -sV -T5 -A 192.168.56.128开放了80端口&#xff0…...

Qt基础之三十三:海量网络数据实时显示

开发中我们可能会遇到接收的网络数据来不及显示的问题。最基础的做法是限制UI中加载的数据行数,这样一来可以防止内存一直涨,二来数据刷新非常快,加载再多也来不及看。此时UI能看到数据当前处理到什么阶段就行,实时性更加重要,要做数据分析的话还得查看日志文件。 这里给出…...

linux console快捷键

Ctrl C&#xff1a;终止当前正在运行的程序。Ctrl D&#xff1a;关闭当前终端会话。Ctrl Z&#xff1a;将当前程序放入后台运行。Ctrl L&#xff1a;清除当前屏幕并重新显示命令提示符。Ctrl R&#xff1a;在历史命令中进行逆向搜索。Ctrl A&#xff1a;将光标移动到行首…...

弗洛伊德龟兔赛跑算法(弗洛伊德判圈算法)

弗洛伊德( 罗伯特・弗洛伊德)判圈算法(Floyd Cycle Detection Algorithm)&#xff0c;又称龟兔赛跑算法(Tortoise and Hare Algorithm)&#xff0c;是一个可以在有限状态机、迭代函数或者链表上判断是否存在环&#xff0c;以及判断环的起点与长度的算法。昨晚刷到一个视频&…...

nodejs篇 express(1)

文章目录前言express介绍安装RESTful接口规范express的简单使用一个最简单的服务器&#xff0c;仅仅只需要几行代码便可以实现。restful规范的五种接口类型请求信息req的获取响应信息res的设置中间件的使用自定义中间件解决跨域nodejs相关其它内容前言 express作为nodejs必学的…...

Java实习生------Redis常见面试题汇总(AOF持久化、RDB快照、分布式锁、缓存一致性)⭐⭐⭐

“年轻人&#xff0c;就要勇敢追梦”&#x1f339; 参考资料&#xff1a;图解redis 目录 谈谈你对AOF持久化的理解&#xff1f; redis的三种写回策略是什么&#xff1f; 谈谈你对AOF重写机制的理解&#xff1f;AOF重写机制的具体过程&#xff1f; 谈谈你对RDB快照的理解&a…...

seata服务搭建

它支持两种存储模式&#xff0c;一个是文件&#xff0c;一个是数据库&#xff0c;下面我们分别介绍一下这两种配置nacos存储配置&#xff0c;注意如果registry.conf中注册和配置使用的是file&#xff0c;就会去读取file.config的配置&#xff0c;如果是nacos则通过nacos动态读取…...

Kafka和RabbitMQ有哪些区别,各自适合什么场景?

目录标题1. 消息的顺序2. 消息的匹配3. 消息的超时4. 消息的保持5. 消息的错误处理6. 消息的吞吐量总结1. 消息的顺序 有这样一个需求&#xff1a;当订单状态变化的时候&#xff0c;把订单状态变化的消息发送给所有关心订单变化的系统。 订单会有创建成功、待付款、已支付、已…...

用Pytorch构建一个喵咪识别模型

本文参加新星计划人工智能(Pytorch)赛道&#xff1a;https://bbs.csdn.net/topics/613989052 目录 一、前言 二、问题阐述及理论流程 2.1问题阐述 2.2猫咪图片识别原理 三、用PyTorch 实现 3.1PyTorch介绍 3.2PyTorch 构建模型的五要素 3.3PyTorch 实现的步骤 3.3.…...

QT搭建MQTT开发环境

QT搭建MQTT开发环境 第一步、明确安装的QT版本 注意&#xff1a; 从QT5.15.0版本开始&#xff0c;官方不再提供离线版安装包&#xff0c;除非你充钱买商业版。 而在这里我使用的QT版本为5.15.2&#xff0c;在线安装了好久才弄好&#xff0c;还是建议使用离线安装的版本 在这里…...

Python3,5行代码,生成自动排序动图,这操作不比Excel香?

5行代码生成自动排序动图1、引言2、代码实战2.1 pynimate介绍2.2 pynimate安装2.3 代码示例3、总结1、引言 小屌丝&#xff1a;鱼哥&#xff0c;听说你的excel段位又提升了&#xff1f; 小鱼&#xff1a;你这是疑问的语气&#xff1f; 小屌丝&#xff1a;没有~ 吧… 小鱼&…...

【Java SE】变量的本质

目录一. 前言二. 变量(variable)2.1 性质2.2 变量类型2.2.1 核心区别2.3 变量的使用三. 总结一. 前言 一天一个Java小知识点&#xff0c;助力小伙伴更好地入门Java&#xff0c;掌握更深层次的语法。 二. 变量(variable) 2.1 性质 变量本质上就是代表一个”可操作的存储空间”…...

【Android笔记85】Android之使用Camera和MediaRecorder录制视频

这篇文章,主要介绍Android之使用Camera和MediaRecorder录制视频。 目录 一、录制视频 1.1、案例运行效果 1.2、创建Camera对象 1.3、创建MediaRecorder对象...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

Qt的学习(二)

1. 创建Hello Word 两种方式&#xff0c;实现helloworld&#xff1a; 1.通过图形化的方式&#xff0c;在界面上创建出一个控件&#xff0c;显示helloworld 2.通过纯代码的方式&#xff0c;通过编写代码&#xff0c;在界面上创建控件&#xff0c; 显示hello world&#xff1b; …...