自注意力和位置编码
一、自注意力

1、给定一个由词元组成的输入序列x1,…,xn, 其中任意xi∈R^d(1≤i≤n)。 该序列的自注意力输出为一个长度相同的序列 y1,…,yn,其中:

2、自注意力池化层将xi当作key,value,query来对序列抽取特征得到y1,…,yn
二、跟CNN、RNN对比(目标都是将由n个词元组成的序列映射到另一个长度相等的序列,其中的每个输入词元或输出词元都由d维向量表示)(不是很明白,有空问问老师)

1、CNN:序列长度是n,输入和输出的通道数量都是d, 所以卷积层的计算复杂度为O(knd^2);卷积神经网络是分层的,因此为有O(1)个顺序操作, 最大路径长度为O(n/k)。
2、RNN:当更新循环神经网络的隐状态时, d×d权重矩阵和d维隐状态的乘法计算复杂度为O(d2)。 由于序列长度为n,因此循环神经网络层的计算复杂度为O(nd2);有O(n)个顺序操作无法并行化,最大路径长度也是O(n)。
3、在自注意力中,查询、键和值都是n×d矩阵。 考虑缩放的”点-积“注意力, 其中n×d矩阵乘以d×n矩阵。 之后输出的n×n矩阵乘以n×d矩阵。 因此,自注意力具有O(n2d)计算复杂性。 每个词元都通过自注意力直接连接到任何其他词元,有O(1)个顺序操作可以并行计算, 最大路径长度也是O(1)。

三、位置编码
1、自注意力则因为并行计算而放弃了顺序操作。 为了使用序列的顺序信息,通过在输入表示中添加 位置编码(positional encoding)来注入绝对的或相对的位置信息。
2、输入表示X∈R^(n×d)包含一个序列中n个词元的d维嵌入表示。 位置编码使用相同形状的位置嵌入矩阵 P∈R^(n×d)输出X+P
3、位置编码矩阵

4、绝对位置信息
竖着看,有三维,第一维00001111变化很慢,第二位00110011变化中等,第三维01010101变化最快,大概是这样子叭。。。。

5、相对位置信息
除了捕获绝对位置信息之外,位置编码还允许模型学习得到输入序列中相对位置信息。 这是因为对于任何确定的位置偏移δ,位置i+δ处 的位置编码可以线性投影位置i处的位置编码来表示。也就是:
位于i+δ处的位置编码可以线性投影位置i处的位置编码来表示
令ωj=1/100002^(j/d), 对于任何确定的位置偏移δ中,任何一对 (p^(i,2j),p^(i,2j+1))都可以线性投影到 (p^(i+δ,2j),p^(i+δ,2j+1))
6、代码
#@save class PositionalEncoding(nn.Module):"""位置编码"""def __init__(self, num_hiddens, dropout, max_len=1000):super(PositionalEncoding, self).__init__()self.dropout = nn.Dropout(dropout)# 创建一个足够长的Pself.P = torch.zeros((1, max_len, num_hiddens))X = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000, torch.arange(0, num_hiddens, 2, dtype=torch.float32) / num_hiddens)self.P[:, :, 0::2] = torch.sin(X)self.P[:, :, 1::2] = torch.cos(X)def forward(self, X):X = X + self.P[:, :X.shape[1], :].to(X.device)return self.dropout(X)
四、总结
1、在自注意力中,查询、键和值都来自同一组输入。
2、卷积神经网络和自注意力都拥有并行计算的优势,而且自注意力的最大路径长度最短。但是因为其计算复杂度是关于序列长度的二次方,所以在很长的序列中计算会非常慢。
3、为了使用序列的顺序信息,可以通过在输入表示中添加位置编码,来注入绝对的或相对的位置信息
相关文章:
自注意力和位置编码
一、自注意力 1、给定一个由词元组成的输入序列x1,…,xn, 其中任意xi∈R^d(1≤i≤n)。 该序列的自注意力输出为一个长度相同的序列 y1,…,yn,其中: 2、自注意力池化层将xi当作key,value,query来…...
“文件夹提示无法访问?高效数据恢复策略全解析“
一、现象解析:文件夹为何提示无法访问? 在日常使用电脑的过程中,不少用户可能会突然遇到文件夹提示“无法访问”的尴尬情况。这一提示不仅阻断了对重要文件的即时访问,还可能预示着数据丢失的风险。造成这一现象的原因多种多样&a…...
结构开发笔记(一):外壳IP防水等级与IP防水铝壳体初步选型
若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/140928101 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...
WPF Datagrid控件,获取某一个单元格中的控件
在WPF应用程序中,比如需要获取特定 DataGrid 单元格中的 TextBlock 控件,可以通过访问 DataGridRow 和 DataGridCell 对象。以下是一个例子,展示如何获取 DataGrid 的第二行第一列中的 TextBlock 控件,并修改其属性。 1. 在XAML中…...
P10838 『FLA - I』庭中有奇树
前言 本题解较为基础,推导如何得出二分解题思路。 题目大意 给出无根带权树,双方采取最佳策略,求节点S->T的最短路。 有两种操作: 我方至多可以使用一次传送,花费k元从a传送到b(ab不能相邻…...
WebRTC简介
WebRTC简介 WebRTC(Web Real-Time Communication)是一项开源的实时通信技术,它允许网页浏览器进行实时语音、视频和数据共享通信,而无需安装额外的插件或应用程序。WebRTC的出现极大地简化了实时通信的开发和部署过程,…...
一套直播系统带商城源码 附搭建教程
本站没搭建测试过,有兴趣的自己折腾了,内含教程! 功能介绍: 礼物系统:普通礼物、豪华礼物、热门礼物、守护礼物、幸运礼物 提现方式:统一平台提现日期及方式,方便用户执行充值提现操作 连麦…...
Netty 总结与补充(十)
简单介绍一下 Netty?你为什么会用到Netty?说说你对Netty的认识?为什么选用Netty来做通信框架? Netty 是一个高性能、异步事件驱动的 NIO 框架,它提供了对 TCP、UDP 和文件传输的支持,作为一个异步 NIO 框架…...
循环实现异步变同步的问题
一、背景 在开发中遇到在循环中调用异步接口的问题,导致页面渲染完成时,没有展示接口返回后拼接的数组数据。二、问题 在代码中使用了map进行循环,导致调用接口的时候处于异步。this.form.list.map(async el>{el.fileList [];if(el.pic…...
测试GPT4o分析巴黎奥运会奖牌数据
使用GPT4o快速调用python代码,生成数据图表 测试GPT4o分析巴黎奥运会奖牌数据 测试GPT4o分析巴黎奥运会奖牌数据 1.首先我们让他给我们生成下当前奥运奖牌数 2.然后我们直接让GPT帮我们运行python代码,并生成奥运会奖牌图表 3.我们还可以让他帮我们…...
TF卡(SD NAND)参考设计和使用提示
目录 电路设计 Layout 设计说明 贴片注意事项 电路设计 1、参考电路: R1~R5 (10K-100 kΩ)是上拉电阻,当SD NAND处于高阻抗模式时,保护CMD和DAT线免受总线浮动。 即使主机使用SD NAND SD模式下的1位模式,主机也应通过上拉电…...
电源芯片负载调整率测试方法、原理以及自动化测试的优势-纳米软件
在芯片设计研发领域,负载调整率作为稳压电源芯片的关键性能指标,直接关系到芯片的稳定性和可靠性,因此其测试和优化显得尤为重要。以下是对负载调整率测试原理、方法以及使用ATECLOUD-IC芯片测试系统优势的进一步阐述: 负载调整率…...
C++威力强大的助手 --- const
Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏: C之旅 const是个奇妙且非比寻常的东西,博主从《Effective C》一书中认识到关于const更深层次的理解,写此博客进行巩固。 &#x…...
测试环境搭建整套大数据系统(十八:ubuntu镜像源进行更新)
镜像源更新为清华源 报错显示 解决方案 做好备份 cp /etc/apt/sources.list /etc/apt/sources.list.bak查看配置信息 sudo vim /etc/apt/sources.listsudo sed -i s/cn.archive.ubuntu.com/mirrors.aliyun.com/g /etc/apt/sources.list sudo apt update...
第128天:内网安全-横向移动IPCATSC 命令Impacket 套件CS 插件全自动
环境部署 案例一: 域横向移动-IPC-命令版-at&schtasks 首先是通过外网web访问到win2008,获得了win2008的权限,这一步不做演示 因为里面的主机都不出网,所以只能利用win2008进行正向或者反向连接 信息收集 域内用户信息&…...
记录一次学习过程(msf、cs的使用、横向渗透等等)
目录 用python搭建一个简单的web服务器 代码解释 MSF msfvenom 功能 用途 查看payloads列表 msfconsole 功能 用途 msfvenom和msfconsole配合使用 来个例子 msf会话中用到的一些命令 在windows中net user用法 列出所有用户账户 显示单个用户账户信息 创建用户账…...
C#中DataTable新增列、删除列、更改列名、交换列位置
C#中DataTable新增列、删除列、更改列名、交换列位置 一、新增列 1.1、新增列 /*新增列*/ dataTable.Columns.Add("列名称", Type.GetType("数据类型")); /*比如添加【name】列,string类型的内容*/ dataTable.Columns.Add("name&…...
C#编写多导联扫描式的波形图Demo
本代码调用ZedGraph绘图框架,自己先安装好ZedGraph环境,然后拖一个zedGraphControl控件就行了,直接黏贴下面代码 基本代码显示 using System; using System.Windows.Forms; using ZedGraph; using System.Timers;namespace ECGPlot {public…...
QT网络编程
Qt 给用户提供了网络编程的接口,包括TCP、UDP、HTTP三种协议的API以及各种类,可以了解一下。 而在 QT 中想要使用网络编程,必须在pro文件中添加 network 模块,否则无法包含网络编程所需的头文件。 UDP UDP是传输层的协议&#…...
Django ASGI服务
1. ASGI简介 在Django中, ASGI(Asynchronous Server Gateway Interface)的引入使得Django应用能够支持异步编程. 从Django 3.0开始, Django就增加了对ASGI的支持, 但直到Django 3.1才正式推荐在生产环境中使用ASGI. ASGI是一个用于Python的异步Web服务器的标准接口, 它允许你运…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
