【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】017 - init_sequence_f 各函数源码分析(一)
【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】017 - init_sequence_f 各函数源码分析(一)
- 一、setup_mon_len():配置 gd->mon_len 监控长度
- 二、fdtdec_setup() :设备树初始化,配置 gd->fdt_blob 指向uboot镜像末尾的 device tree
- 三、【RK3568未跑】trace_early_init():映射并初始化tracebuffer的内存
- 四、initf_malloc():配置早期malloc内存分配地址 gd->malloc_base
- 五、log_init():初始化gd->log_head链表,配置log等级及打印格式
- 六、initf_bootstage():初始化bootstatge
- 七、event_init():初始化gd->event_state->spy_head结构体链表,用于监控事件
- 八、【RK3568未跑】bloblist_maybe_init():初始化bloblist的数据结构
- 九、【RK3568未跑】setup_spl_handoff()
- 十、【RK3568未跑】console_record_init()
系列文章汇总:《【OpenHarmony4.1 之 U-Boot 源码深度解析】000 - 文章链接汇总》
本文链接:《【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】017 - init_sequence_f 各函数源码分析(一)》
本文是对 《【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】015 - init_sequence_f 函数列表整理分析》 的完善,
global data 整理结构体内容如下,它是整个UBOOT 的核心,
接下来,我们主要将 init_sequence_f 中的函数逐个分析下它干了什么,看看分别填充了 global data 中的哪些数据。
# u-boot相关文章:
【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】017 - init_sequence_f 各函数源码分析(一)
【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】017 - init_sequence_f 各函数源码分析(一) 一、setup_mon_len():配置 gd->mon_len 监控长度二、fdtdec_setup() :设备树初始化,配置 gd->fdt_blob 指向uboot镜像末尾的 device tree三、【RK3568未跑】trace_early…...
Mojo AI编程语言(十七)跨平台开发:应用广泛适配
目录 1. Mojo语言简介 2. 跨平台开发的挑战 3. Mojo语言的跨平台特性 3.1 编译器支持 3.2 标准库支持 3.3 抽象层 4. 跨平台开发的最佳实践 4.1 避免平台特定代码 4.2 使用依赖管理工具 4.3 测试覆盖率 5. 高级跨平台开发技巧 5.1 使用容器 5.2 持续交付 5.3 性能…...
Python面试题:结合Python技术,如何使用Astropy进行天文数据处理
Astropy 是一个用于天文学研究的 Python 库,它提供了处理天文数据的多种工具和函数。以下是一些使用 Astropy 进行天文数据处理的示例: 安装 Astropy 首先,需要确保已安装 Astropy,可以使用以下命令进行安装: pip i…...
Jpa-多表关联-OneToOne
Jpa-多表关联-OneToOne 准备JoinColumnOneToOne属性targetEntitycascade*PERSISTMERGEREMOVEREFRESH orphanRemovalfetchoptionalMappedBy* OneToOne在 hibernate中用于对表与表之间进行维护关联 准备 import com.alibaba.fastjson.JSON; import jakarta.persistence.*; impor…...
zdpy+vue3+onlyoffice文档系统实战上课笔记 20240805
上次 上次计划 1、最近文档表格完善 2、实现登录功能 3、新建文件,复制文件,删除文件 4、其他 目前任务:最近文档表格完善 1、在名称前面,渲染这个文档的图标 2、大小的基本的单位是kb,超过1024kb则换成mb࿰…...
【Linux 从基础到进阶】Linux 内核参数调优
Linux 内核参数调优 引言 内核参数调优是提升 Linux 系统性能和稳定性的重要手段。通过合理配置和优化内核参数,可以显著改善系统资源利用率和响应速度。本文将介绍内核参数的调优方法,并提供适用于 CentOS 和 Ubuntu 系统的具体示例。 1. 内核参数简介 内核参数是控制 L…...
【Java数据结构】---泛型
乐观学习,乐观生活,才能不断前进啊!!! 我的主页:optimistic_chen 我的专栏:c语言 ,Java 欢迎大家访问~ 创作不易,大佬们点赞鼓励下吧~ 文章目录 包装类装箱和拆箱泛型泛型…...
Java Lambda表达式总结(快速上手图解)
Java Lambda表达式总结(快速上手详解)-CSDN博客https://blog.csdn.net/m0_66070037/article/details/140912566?spm1001.2014.3001.5501...
【算法模板】图论:Tarjan算法求割边割点
概念 割边(Bridge 或 Cut Edge) 定义: 在一个无向连通图中,如果删除某条边后,图不再连通(即任意两点之间不能相互到达),则称该边为割边。割边也被称为桥,因为它像桥梁…...
如何在IDEA上使用JDBC编程【保姆级教程】
目录 前言 什么是JDBC编程 本质 使用JDBC编程的优势 JDBC流程 如何在IEDA上使用JDBC JDBC编程 1.创建并初始化数据源 2.与数据库服务器建立连接 3.创建PreparedStatement对象编写sql语句 4.执行SQL语句并处理结果集 executeUpdate executeQuery 5.释放资源 前言 在…...
linux web系统安装常见问题解决,租房系统为案例
Warning: require(): open_basedir restriction in effect. 一、执行文件权限 网站目录下 open_basedir增加执行路径 二、文件夹权限放行 三、安装基础环境 composer install 四、数据合并 php think migrate:run 20200402094148 AdminUser: migrating 20200402094148 A…...
Linux驱动开发—平台总线模型详解
文章目录 1.平台总线介绍1.1平台总线模型的组成部分1.2平台总线模型的优势 2.使用平台总线模型开发驱动2.1注册platform设备2.2注册platform驱动2.3效果演示 1.平台总线介绍 Linux 平台总线模型(Platform Bus Model)是一种设备驱动框架,用于…...
说一下网络层,传输层,数据链路层做什么的,之间的关系?
网络层主要负责为数据包选择最佳路径,将数据从源主机传输到目标主机。它的关键任务包括路由选择、拥塞控制和网络互联等。通过网络层的功能,不同网络之间能够实现通信和数据传输。 传输层的作用是在源端和目的端之间提供可靠或不可靠的端到端的数据传输…...
解锁AI新纪元:Milvus Cloud与Zilliz Cloud的高可用之道
在当今数字化时代,系统的持续稳定运行与数据的即时访问性已成为衡量技术服务质量的关键指标。面对复杂多变的运行环境,包括电力波动、网络故障乃至人为操作失误等不可预见因素,数据库系统的高可用性(High Availability, HA)成为了保障业务连续性的重要基石。特别是在大数据…...
svn安装
579 yum install subversion 580 rpm -qa|grep subversion 581 yum -y install subversion 582 rpm -ql subversion 583 /usr/bin/svnversion --version 584 mkdir /data/svnrepos 585 svnadmin create /data/svnrepos/abc 586 svnadmin create /data/svnrepos/gzss 587 cd…...
【隐私计算篇】混淆电路之深入浅出
入门隐私计算的阶段,一般都会涉及对于混淆电路的学习,这是因为混淆电路是多方安全计算中的基础密码原语,也是隐私保护中重要的技术。为了帮助更好地理解混淆电路的原理,今天对其进行原理以及相关优化手段进行解析和分享。 1. 混淆…...
基于GRU神经网络的微博分类预测
目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 gru的原理 GRU神经网络微博分类 结果分析 展望 参考论文 背影 传统的方法微博分类预测准确率低,为提高精度,本文用gru进行预测 摘要 LSTM原理,GRU原理,MATALB编程gru的微博分类预测 LSTM的基本定义 LSTM是一种含有LST…...
LVS-DR模式集群:案例与概念
DR模式(直接路由) 概念 Direct Routing,简称DR模式采用半开放式的网络结构,与TUN模式的结构类似,但内网服务器并不是分散在各地,而是与调度器位于同一个物理网络负载调度器与内网服务器通过本地网络连接&a…...
拓扑排序:Kahn算法与DFS算法
引言 拓扑排序是有向无环图(DAG)中的一种线性排序,使得对于图中的每一条有向边 ( u \rightarrow v ),顶点 ( u ) 在排序中出现在顶点 ( v ) 之前。本文将详细介绍两种实现拓扑排序的算法:Kahn算法和基于深度优先搜索&…...
图像处理 -- Sobel滤波器的实现原理与使用案例
Sobel滤波器 概述 Sobel滤波器是一种边缘检测方法,用于图像处理和计算机视觉领域。它通过计算图像灰度值的梯度来检测边缘。Sobel滤波器结合了高斯平滑和微分操作,以减少噪声并增强边缘检测效果。 实现原理 Sobel滤波器通过使用两个3x3卷积核&#x…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
