谈谈冯诺依曼体系
我们都知道冯诺依曼体系这张图最为代表性,而接下来我们就来浅谈一下各部分之间的作用~
输入设备:键盘,磁盘,网卡,话筒等等
输出设备:磁盘,网卡,声卡,显示屏等等
这些硬件设备中有单一性的,也有二者兼得的~
存储器:内存 ——掉电易失
我们再来看一下黑色的数据信号,各个设备之间有什么关联吗?本质就是为了进行数据流动,而数据流动又体现为各设备之间的数据拷贝。那么这个拷贝速度就作为计算机效率的重要指标~
那么为什么要有存储器呢?我们直接让cpu排中间也合理吧~
由于输入设备与输出设备传输效率很低,而cpu效率又很高,这样就会造成木桶相应(决定木桶容量的是最短的那块板子),两个慢性子和一个急性子怎么都搭不到一块~
所以就有了内存的诞生,它的效率很接近cpu可以很好衔接~它的存在就好比公司里老板的秘书,员工效率太慢挡不住老板频繁追问时,它可以让员工慢慢在内存里面先准备好,然后再一次性向老板传达内容,老板看完马上发表意见给它,内存这时候又充当缓存的作用,等积累一定量再一次性刷新到输出设备中。
简而言之,内存从整体上提升了计算机的效率,不再以输入,输出设备为主,而是以内存自身的效率为主。
这样就分割为两处地方:
外设只需要与内存建立联系,而cpu也只需要和内存打交道~
就比如我们在网络上进行聊天,张三通过键盘输入信息,然后到内存中经过cpu处理后发生回内存,内存再传输到网卡这个输出设备给李四。李四通过网卡接收到了信息,然后也交给内存让cpu处理,最终返回给内存由内存传输到显示屏进行显示~
而这正是数据之间的交流活动过程~
笔记截图:
相关文章:

谈谈冯诺依曼体系
我们都知道冯诺依曼体系这张图最为代表性,而接下来我们就来浅谈一下各部分之间的作用~ 输入设备:键盘,磁盘,网卡,话筒等等 输出设备:磁盘,网卡,声卡,显示屏等等 这些硬件…...

第十二章 元数据管理10分
12.1 引言 如果没有元数据,组织可能根本无法管理其数据。 ISO/IEC11179 元数据注册标准。 元数据管理原则:应归尽归,应收尽收。衡量标准:目录是否完整。(去第十二章 元数据管理)。 主数据管理:主…...

eco_tracker
特征 VGG是第一个提出使用块的想法,通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的架构。 原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。 第一个模块有64个…...

electron 鼠标事件
版本:"electron": "^22.3.27",实现一个在windows下图片点击右键,使用electron打开的功能。 一、注册表操作 注册表工具类 const cp require("child_process"); const { app } require(electron/remote) e…...

网络安全第一次作业(ubuntuan安装nginx以及php部署 and sql注入(less01-08)))
ubuntuan安装nginx以及php部署 1.安装依赖包 rootadmin123-virtual-machine:~# apt-get install gcc libpcre3 libpcre3-dev zliblg zliblg-dev openssl libssl-dev2.安装nginx 到https://nginx.org/en/download.html下载nginx 之后将压缩包通过xtfp传输到ubuntu的/usr/loc…...

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】017 - init_sequence_f 各函数源码分析(一)
【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】017 - init_sequence_f 各函数源码分析(一) 一、setup_mon_len():配置 gd->mon_len 监控长度二、fdtdec_setup() :设备树初始化,配置 gd->fdt_blob 指向uboot镜像末尾的 device tree三、【RK3568未跑】trace_early…...

Mojo AI编程语言(十七)跨平台开发:应用广泛适配
目录 1. Mojo语言简介 2. 跨平台开发的挑战 3. Mojo语言的跨平台特性 3.1 编译器支持 3.2 标准库支持 3.3 抽象层 4. 跨平台开发的最佳实践 4.1 避免平台特定代码 4.2 使用依赖管理工具 4.3 测试覆盖率 5. 高级跨平台开发技巧 5.1 使用容器 5.2 持续交付 5.3 性能…...

Python面试题:结合Python技术,如何使用Astropy进行天文数据处理
Astropy 是一个用于天文学研究的 Python 库,它提供了处理天文数据的多种工具和函数。以下是一些使用 Astropy 进行天文数据处理的示例: 安装 Astropy 首先,需要确保已安装 Astropy,可以使用以下命令进行安装: pip i…...

Jpa-多表关联-OneToOne
Jpa-多表关联-OneToOne 准备JoinColumnOneToOne属性targetEntitycascade*PERSISTMERGEREMOVEREFRESH orphanRemovalfetchoptionalMappedBy* OneToOne在 hibernate中用于对表与表之间进行维护关联 准备 import com.alibaba.fastjson.JSON; import jakarta.persistence.*; impor…...

zdpy+vue3+onlyoffice文档系统实战上课笔记 20240805
上次 上次计划 1、最近文档表格完善 2、实现登录功能 3、新建文件,复制文件,删除文件 4、其他 目前任务:最近文档表格完善 1、在名称前面,渲染这个文档的图标 2、大小的基本的单位是kb,超过1024kb则换成mb࿰…...

【Linux 从基础到进阶】Linux 内核参数调优
Linux 内核参数调优 引言 内核参数调优是提升 Linux 系统性能和稳定性的重要手段。通过合理配置和优化内核参数,可以显著改善系统资源利用率和响应速度。本文将介绍内核参数的调优方法,并提供适用于 CentOS 和 Ubuntu 系统的具体示例。 1. 内核参数简介 内核参数是控制 L…...

【Java数据结构】---泛型
乐观学习,乐观生活,才能不断前进啊!!! 我的主页:optimistic_chen 我的专栏:c语言 ,Java 欢迎大家访问~ 创作不易,大佬们点赞鼓励下吧~ 文章目录 包装类装箱和拆箱泛型泛型…...

Java Lambda表达式总结(快速上手图解)
Java Lambda表达式总结(快速上手详解)-CSDN博客https://blog.csdn.net/m0_66070037/article/details/140912566?spm1001.2014.3001.5501...

【算法模板】图论:Tarjan算法求割边割点
概念 割边(Bridge 或 Cut Edge) 定义: 在一个无向连通图中,如果删除某条边后,图不再连通(即任意两点之间不能相互到达),则称该边为割边。割边也被称为桥,因为它像桥梁…...

如何在IDEA上使用JDBC编程【保姆级教程】
目录 前言 什么是JDBC编程 本质 使用JDBC编程的优势 JDBC流程 如何在IEDA上使用JDBC JDBC编程 1.创建并初始化数据源 2.与数据库服务器建立连接 3.创建PreparedStatement对象编写sql语句 4.执行SQL语句并处理结果集 executeUpdate executeQuery 5.释放资源 前言 在…...

linux web系统安装常见问题解决,租房系统为案例
Warning: require(): open_basedir restriction in effect. 一、执行文件权限 网站目录下 open_basedir增加执行路径 二、文件夹权限放行 三、安装基础环境 composer install 四、数据合并 php think migrate:run 20200402094148 AdminUser: migrating 20200402094148 A…...

Linux驱动开发—平台总线模型详解
文章目录 1.平台总线介绍1.1平台总线模型的组成部分1.2平台总线模型的优势 2.使用平台总线模型开发驱动2.1注册platform设备2.2注册platform驱动2.3效果演示 1.平台总线介绍 Linux 平台总线模型(Platform Bus Model)是一种设备驱动框架,用于…...

说一下网络层,传输层,数据链路层做什么的,之间的关系?
网络层主要负责为数据包选择最佳路径,将数据从源主机传输到目标主机。它的关键任务包括路由选择、拥塞控制和网络互联等。通过网络层的功能,不同网络之间能够实现通信和数据传输。 传输层的作用是在源端和目的端之间提供可靠或不可靠的端到端的数据传输…...

解锁AI新纪元:Milvus Cloud与Zilliz Cloud的高可用之道
在当今数字化时代,系统的持续稳定运行与数据的即时访问性已成为衡量技术服务质量的关键指标。面对复杂多变的运行环境,包括电力波动、网络故障乃至人为操作失误等不可预见因素,数据库系统的高可用性(High Availability, HA)成为了保障业务连续性的重要基石。特别是在大数据…...

svn安装
579 yum install subversion 580 rpm -qa|grep subversion 581 yum -y install subversion 582 rpm -ql subversion 583 /usr/bin/svnversion --version 584 mkdir /data/svnrepos 585 svnadmin create /data/svnrepos/abc 586 svnadmin create /data/svnrepos/gzss 587 cd…...

【隐私计算篇】混淆电路之深入浅出
入门隐私计算的阶段,一般都会涉及对于混淆电路的学习,这是因为混淆电路是多方安全计算中的基础密码原语,也是隐私保护中重要的技术。为了帮助更好地理解混淆电路的原理,今天对其进行原理以及相关优化手段进行解析和分享。 1. 混淆…...

基于GRU神经网络的微博分类预测
目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 gru的原理 GRU神经网络微博分类 结果分析 展望 参考论文 背影 传统的方法微博分类预测准确率低,为提高精度,本文用gru进行预测 摘要 LSTM原理,GRU原理,MATALB编程gru的微博分类预测 LSTM的基本定义 LSTM是一种含有LST…...

LVS-DR模式集群:案例与概念
DR模式(直接路由) 概念 Direct Routing,简称DR模式采用半开放式的网络结构,与TUN模式的结构类似,但内网服务器并不是分散在各地,而是与调度器位于同一个物理网络负载调度器与内网服务器通过本地网络连接&a…...

拓扑排序:Kahn算法与DFS算法
引言 拓扑排序是有向无环图(DAG)中的一种线性排序,使得对于图中的每一条有向边 ( u \rightarrow v ),顶点 ( u ) 在排序中出现在顶点 ( v ) 之前。本文将详细介绍两种实现拓扑排序的算法:Kahn算法和基于深度优先搜索&…...

图像处理 -- Sobel滤波器的实现原理与使用案例
Sobel滤波器 概述 Sobel滤波器是一种边缘检测方法,用于图像处理和计算机视觉领域。它通过计算图像灰度值的梯度来检测边缘。Sobel滤波器结合了高斯平滑和微分操作,以减少噪声并增强边缘检测效果。 实现原理 Sobel滤波器通过使用两个3x3卷积核&#x…...

机器学习 第10章-降维与度量学习
机器学习 第10章-降维与度量学习 10.1 k近邻学习 k近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测。通…...

linux驱动:(7)物理地址到虚拟地址映射
单片机、裸机、linux操控硬件方法 在单片机和裸机中操作硬件是通过指针来对寄存器赋值来进行操控 但对于linux中不能这样,不能直接对物理地址直接修改,因为linux使能了mmu,所以不能直接菜操作物理地址 如果要操作硬件,需要先把…...

浏览器用户文件夹详解 - Preferences(十)
1.Preferences简介 1.1 什么是Preferences文件? Preferences文件是Chromium浏览器中用于存储用户个性化设置和配置的一个重要文件。每当用户在浏览器中更改设置或安装扩展程序时,这些信息都会被记录在Preferences文件中。通过这些记录,浏览…...

Robot Operating System——电池电量通知
大纲 应用场景定义字段解释 案例 sensor_msgs::msg::BatteryState 是 ROS 2 中定义的消息类型,用于表示电池状态。它包含了电池电量、电压、电流、温度等信息。 应用场景 机器人 电池监控:在移动机器人中,电池是主要的电源。BatteryState 消…...

二进制安装docker
目录 一、准备 Docker CE 二进制包 二、解压.tgz包 三、复制二进制文件到/usr/bin/目录 四、创建用户组 五、配置相关服务配置文件 六、拷贝配置文件到指定目录 七、启动 dockerd 服务进程 八、shell脚本一键安装 一、准备 Docker CE 二进制包 https://download.docker…...