两端约束的最优控制问题及其数值解法
问题的基本形式
设 n n n维系统状态房产 x ˙ ( t ) = f [ x ( t ) , u ( t ) , t ] \dot{x}(t)=f[x(t),u(t),t] x˙(t)=f[x(t),u(t),t],控制向量 u ( t ) ∈ Ω u(t)\in\Omega u(t)∈Ω是分段连续函数, Ω ∈ R m \Omega\in R^m Ω∈Rm是有界闭集,满足约束 g [ x ( t ) , u ( t ) , t ] ≥ 0 g[x(t),u(t),t]\ge 0 g[x(t),u(t),t]≥0,终端时刻固定为 t f t_f tf。目标是使状态从初态 x ( t 0 ) = x 0 x(t_0)=x_0 x(t0)=x0转移到终态 x ( t f ) x(t_f) x(tf),其中 G [ x ( t f ) , t f ] = 0 G[x(t_f),t_f]=0 G[x(tf),tf]=0,且使得性能指标 J [ u ( t ) ] = Φ [ x ( t f ) , t f ] + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ] d t J[u(t)]=\Phi[x(t_f),t_f]+\int_{t_0}^{t_f}L[x(t),u(t),t]dt J[u(t)]=Φ[x(tf),tf]+∫t0tfL[x(t),u(t),t]dt达到最小。
基本解法
构造Hamilton函数 H [ x ( t ) , u ( t ) , λ ( t ) , t ] = L [ x ( t ) , u ( t ) , t ] + λ ( t ) T f [ x ( t ) , u ( t ) , t ] H[x(t),u(t),\lambda(t),t]=L[x(t),u(t),t]+\lambda(t)^Tf[x(t),u(t),t] H[x(t),u(t),λ(t),t]=L[x(t),u(t),t]+λ(t)Tf[x(t),u(t),t] 。设 u ∗ ( t ) u^*(t) u∗(t)为最优控制, x ∗ ( t ) x^*(t) x∗(t)是最优轨线,则存在与 u = u ∗ ( t ) u=u^*(t) u=u∗(t)和 x = x ∗ ( t ) x=x^*(t) x=x∗(t)对应的最优伴随向量 λ = λ ∗ ( t ) \lambda=\lambda^*(t) λ=λ∗(t),使得: { x ˙ = ∂ H ∂ λ λ ˙ = − ∂ H ∂ x \begin{cases} \dot{x}=\frac{\partial H}{\partial \lambda} \\ \dot{\lambda}=-\frac{\partial H}{\partial x}\\ \end{cases} {x˙=∂λ∂Hλ˙=−∂x∂H
其中, u ∗ = arg min u ∈ Ω H [ x ∗ ( t ) , u ( t ) , λ ∗ ( t ) ] u^*=\arg\min_{u\in \Omega}H[x^*(t),u(t),\lambda^*(t)] u∗=argminu∈ΩH[x∗(t),u(t),λ∗(t)];
上述方程同时还满足边界条件 x ( t 0 ) = x 0 , G [ x ( t f ) , t f ] = 0 x(t_0)=x_0,G[x(t_f),t_f]=0 x(t0)=x0,G[x(tf),tf]=0;
横截条件 λ ( t f ) = ∂ Φ ( t f ) ∂ x + [ ∂ G ( t f ) ∂ x ] T v \lambda(t_f)=\frac{\partial \Phi(t_f)}{\partial x}+[\frac{\partial G(t_f)}{\partial x}]^Tv λ(tf)=∂x∂Φ(tf)+[∂x∂G(tf)]Tv。
数值解法
直接法
在考虑控制量约束 g [ x ( t ) , u ( t ) , t ] ≥ 0 g[x(t),u(t),t]\ge 0 g[x(t),u(t),t]≥0和终端约束 G [ x ( t f ) , t f ] = 0 G[x(t_f),t_f]=0 G[x(tf),tf]=0存在的条件下,需要对原来的性能指标 J [ u ( t ) ] J[u(t)] J[u(t)]加罚函数项得到 J ˉ [ u ( t ) ] \bar{J}[u(t)] Jˉ[u(t)]:
J ˉ [ u ( t ) ] = J [ u ( t ) ] + μ ∑ i = 1 r G i [ x ( t f ) , t f ] 2 + η ∫ t 0 t f ∑ i = 1 l min ( g i , 0 ) 2 d t \bar{J}[u(t)]=J[u(t)]+\mu\sum_{i=1}^rG_i[x(t_f),t_f]^2+\eta\int_{t_0}^{t_f}\sum_{i=1}^l\min(g_i,0)^2dt Jˉ[u(t)]=J[u(t)]+μi=1∑rGi[x(tf),tf]2+η∫t0tfi=1∑lmin(gi,0)2dt
直接法多采用梯度法及其变型进行求解,具体的计算步骤如下:
Step1. 根据经验选定初始控制 u 0 ( t ) u^0(t) u0(t),允许误差 ε > 0 \varepsilon>0 ε>0;
Step2. 将 u 0 ( t ) u^0(t) u0(t)代入状态方程并求解得到 x 0 ( t ) x^0(t) x0(t);
Step3. 计算 J ˉ [ u 0 ( t ) ] \bar{J}[u^0(t)] Jˉ[u0(t)],并根据协态方程从 t f t_f tf到 t 0 t_0 t0反向积分计算 λ 0 ( t ) \lambda^0(t) λ0(t);
Step4. 计算 u 0 u^0 u0处的梯度 ∇ J ˉ [ u 0 ( t ) ] = ∂ H [ x 0 ( t ) , u 0 ( t ) , λ 0 ( t ) , t ] ∂ u \nabla \bar{J}[u^0(t)]=\frac{\partial H[x^0(t),u^0(t),\lambda^0(t),t]}{\partial u} ∇Jˉ[u0(t)]=∂u∂H[x0(t),u0(t),λ0(t),t];
Step5. 确定搜索步长 α 0 = arg min α > 0 J ˉ [ u 0 − α ∇ J ˉ [ u 0 ( t ) ] ] \alpha^0=\arg\min_{\alpha >0} \bar{J}[u^0-\alpha\nabla \bar{J}[u^0(t)]] α0=argminα>0Jˉ[u0−α∇Jˉ[u0(t)]];
Step6. 修正控制向量 u 1 ( t ) = u 0 ( t ) − α 0 ∇ J ˉ [ u 0 ( t ) ] u^1(t)=u^0(t)-\alpha^0\nabla \bar{J}[u^0(t)] u1(t)=u0(t)−α0∇Jˉ[u0(t)];
Step7. 若满足终止条件 ∣ ∣ ∇ J ˉ [ u 0 ( t ) ] ∣ ∣ ≤ ε ||\nabla \bar{J}[u^0(t)]||\leq \varepsilon ∣∣∇Jˉ[u0(t)]∣∣≤ε,则结束循环;否则,令 u 0 = u 1 u^0=u^1 u0=u1回到Step2.
Step2和Step3往往是比较难计算的。
另外,若 u ( t ) u(t) u(t)满足上下界限约束,则在Step6中需要对 u ( t ) u(t) u(t)进行限幅。而针对横截条件中的 v v v可以采用 2 μ G 2\mu G 2μG估算:
λ i ( t f ) = ∂ Φ ( t f ) ∂ x i + ∑ j = 1 r 2 μ G j [ x ( t f ) , t f ] ∂ G j ( t f ) ∂ x i \lambda_i(t_f)=\frac{\partial \Phi(t_f)}{\partial x_i}+\sum_{j=1}^r2\mu G_j[x(t_f),t_f]\frac{\partial G_j(t_f)}{\partial x_i} λi(tf)=∂xi∂Φ(tf)+j=1∑r2μGj[x(tf),tf]∂xi∂Gj(tf)
间接法
直接法中修正后的控制向量 u u u不一定满足约束 g ≥ 0 g\geq 0 g≥0,而是通过施加罚函数,限幅等手段进行迭代。而间接法则是尽量充分保证 u u u能满足约束 g ≥ 0 g\geq 0 g≥0,这里给出间接法中的拟线性化方法实现逼近。该方法的核心是首先求出 u ( x , λ , t ) u(x,\lambda,t) u(x,λ,t)带入正则方程,引入增广状态 Y ( t ) = [ x ( t ) , λ ( t ) ] T , Y ( t ) ∈ R 2 n Y(t)=[x(t),\lambda(t)]^T,Y(t)\in R^{2n} Y(t)=[x(t),λ(t)]T,Y(t)∈R2n,将正则方程转化为 Y ˙ = g ( Y , t ) \dot{Y}=g(Y,t) Y˙=g(Y,t),再将该方程进一步线性化得到:
Y ˙ K + 1 = ( ∂ g ∂ Y ) K Y K + 1 + [ g ( Y K , t ) − ( ∂ g ∂ Y ) K Y K ] \dot{Y}^{K+1}=(\frac{\partial g}{\partial Y})_KY^{K+1}+[g(Y^K,t)-(\frac{\partial g}{\partial Y})_KY^{K}] Y˙K+1=(∂Y∂g)KYK+1+[g(YK,t)−(∂Y∂g)KYK]
其中, Y K Y^K YK代表第 K K K步迭代的解。若对于给定的 ε > 0 \varepsilon>0 ε>0,当 ∣ ∣ Y k + 1 ( t ) − Y k ( t ) ∣ ∣ ≤ ε ||Y^{k+1}(t)-Y^k(t)||\leq \varepsilon ∣∣Yk+1(t)−Yk(t)∣∣≤ε时停止计算。
相关文章:
两端约束的最优控制问题及其数值解法
问题的基本形式 设 n n n维系统状态房产 x ˙ ( t ) f [ x ( t ) , u ( t ) , t ] \dot{x}(t)f[x(t),u(t),t] x˙(t)f[x(t),u(t),t],控制向量 u ( t ) ∈ Ω u(t)\in\Omega u(t)∈Ω是分段连续函数, Ω ∈ R m \Omega\in R^m Ω∈Rm是有界闭集…...
电磁仿真--基本操作-CST-(6)-导线周围磁场
目录 1. 简介 2. 过程 2.1 新建工程 2.2 选择求解器 2.3 设置单位 2.4 设置频率 2.5 绘制导线 2.6 Background 2.7 边界条件 2.8 设置激励源 2.9 查看结果 3. 其他设置 3.1 网格类型 3.2 集总网络元件 3.3 阻抗和导纳矩阵 3.4 自适应网格细化 3.4 提升计算效率…...
用Java手写jvm之模拟方法调用指令invokexxx和方法返回指令xreturn
写在前面 源码 。 本文一起看下方法调用相关的指令invokexxx以及方法返回(栈帧弹出线程栈)相关的指令xReturn 。 1:正文 因为invokexxx指令和普通的指令不同,会创建一个新的栈帧,并压倒操作数栈中,所以我…...
自定义枚举类型检查
/*** 工单状态,使用字典:order_item_state*/ CheckEnum(nullAble true, enumType OrderItemStateEnum.class) private String workState; 注解类 package com.gdyunst.core.tool.validation;import javax.validation.Constraint; import javax.valid…...
探索四川财谷通抖音小店:安全与信赖的购物新体验
在数字经济蓬勃发展的今天,抖音平台凭借其庞大的用户基础和强大的内容生态,逐渐成为了电商领域的一股不可忽视的力量。其中,四川财谷通抖音小店作为这一浪潮中的佼佼者,不仅以其丰富的商品种类和独特的品牌魅力吸引了众多消费者的…...
systemd-manage系统服务图形化管理工具使用教程
1. systemd-manage介绍 systemd-manage是一个开源的基于systemd服务管理的图形化工具,使用qt图形库进行开发,可以提供服务管理,用户会话,配置文件修改,日志查询,性能分析,进程管理等功能。图形…...
移除元素(LeetCode)
题目 给你一个数组 和一个值 ,你需要 原地 移除所有数值等于 的元素,并返回移除后数组的新长度。 不要使用额外的数组空间,你必须仅使用 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。 解…...
代码随想录27期|Python|Day38|509斐波那契|738.爬楼梯|746.746. 使用最小花费爬楼梯
贴一下动态规划的步骤(5步),就像是之前递归一样,需要每次落实到位。 确定dp数组(dp table)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组 509. 斐波那契 注意到n的范…...
windows docker容器部署前端项目
一、介绍 Docker 是一个开源的平台,旨在简化应用程序的开发、部署和运行。它通过使用容器(containers)来实现这一点。容器是一种轻量级、可移植的虚拟化方式,可以在不同的环境中一致地运行软件。 Docker 的主要作用和优点包括&a…...
科普文:微服务之全文检索ElasticSearch 集群的搭建
一、集群有什么用 1.1 群集的含义与产生 群集(或称为集群)是由多台主机构成,但对外,只表现为一个整体,只提供一个访问入口(域名或IP),相当于一台大型计算机。互联网应用中…...
QtObject是干什么的?
QtObject 是 Qt Quick 中的一个基类,用于创建非视觉对象。这意味着 QtObject 不渲染任何视觉内容,它主要用于定义数据和逻辑,而不是用户界面元素。你可以把 QtObject 看作是 QML 中的一个基础组件,用于创建和管理不需要显示的对象…...
锐捷RCNA | 远程登录与路由技术
锐捷RCNA | 远程登录与路由技术 一、远程登录配置1. Telnet远程登录介绍2. 案例1--设置远程登录密码实现远程登录3. 案例2--定义不同用户账户实现远程用户权限隔离4. SSH远程登录介绍5. 案例--通过SSH功能远程管理设备 二、路由技术1. 直连路由的数据通信2. 间接路由的数据通信…...
实现Vue-tiny-diff算法
前言 前面我们实现了基本的数据更新到视图渲染的逻辑,但是这种方式(innerHTML)是极其低效的, 因此,我们相应引入 dom 和 diff 算法, 数据到视图的过程变为: state -> vdom -> dom vNode 层 所谓 vNode, 就是一个表示 dom 结构的轻量对象 {tag, props, children; }为…...
正则表达式测试工具
前言 正则表达式测试工具可供您输入正则表达式和测试文本,立即查看匹配结果. 下面是离线的HTML文件,同样可以提供相同的服务. 目录 使用说明 HTML代码 正则表达式的编写经验和方法 总结 使用说明 1.先将HTML代码存储成.html为后缀的文件; 2.然后用浏览器打开这个…...
Github 2024-08-02 开源项目日报 Top9
根据Github Trendings的统计,今日(2024-08-02统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目4Go项目1C项目1Rust项目1Shell项目1Dockerfile项目1TypeScript项目1Dart项目1Docker-OSX: 在Docker容器中运行Mac OS X 创建周期:152…...
重生之我 学习【数据结构之顺序表(SeqList)】
⭐⭐⭐ 新老博友们,感谢各位的阅读观看 期末考试&假期调整暂时的停更了两个多月 没有写博客为大家分享优质内容 还容各位博友多多的理解 美丽的八月重生之我归来 继续为大家分享内容 你我共同加油 一起努力 ⭐⭐⭐ 数据结构将以顺序表、链表、栈区、队列、二叉树…...
前端day4-表单标签
<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>day4-表单</title> </head> <body&g…...
vue3-print-nb 表格打印分页,第一页有空白的情况出现解决方法(两种:一种原生,一种基于element表格)
第一种:基于element表格分页 <template><!-- element分组打印 --><div class"hello"><button v-print"printContent">打印</button><div id"printDiv"><p>工资统计表</p><p>…...
搜维尔科技:借助 Xsens中的远程人体录制功能,可以在任何位置以无限量同时捕捉无限数量演员的身体动作
借助 Xsens中的远程人体录制功能,可以在任何位置以无限量同时捕捉无限数量演员的身体动作 搜维尔科技:借助 Xsens中的远程人体录制功能,可以在任何位置以无限量同时捕捉无限数量演员的身体动作...
2024/08 近期关于AI的阅读和理解[笔记]
#Cohere 就像商业能力很强的云数仓公司 Snowflake 一样,Cohere 也采用了按需付费模式而不是按月或按年付费,而且它的付费模式很精细。Cohere 按照模型的不同能力,包括文本生成,文本总结,重新排名,文本分类…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
