当前位置: 首页 > news >正文

两端约束的最优控制问题及其数值解法

问题的基本形式

n n n维系统状态房产 x ˙ ( t ) = f [ x ( t ) , u ( t ) , t ] \dot{x}(t)=f[x(t),u(t),t] x˙(t)=f[x(t),u(t),t],控制向量 u ( t ) ∈ Ω u(t)\in\Omega u(t)Ω是分段连续函数, Ω ∈ R m \Omega\in R^m ΩRm是有界闭集,满足约束 g [ x ( t ) , u ( t ) , t ] ≥ 0 g[x(t),u(t),t]\ge 0 g[x(t),u(t),t]0,终端时刻固定为 t f t_f tf。目标是使状态从初态 x ( t 0 ) = x 0 x(t_0)=x_0 x(t0)=x0转移到终态 x ( t f ) x(t_f) x(tf),其中 G [ x ( t f ) , t f ] = 0 G[x(t_f),t_f]=0 G[x(tf),tf]=0,且使得性能指标 J [ u ( t ) ] = Φ [ x ( t f ) , t f ] + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ] d t J[u(t)]=\Phi[x(t_f),t_f]+\int_{t_0}^{t_f}L[x(t),u(t),t]dt J[u(t)]=Φ[x(tf),tf]+t0tfL[x(t),u(t),t]dt达到最小。

基本解法

构造Hamilton函数 H [ x ( t ) , u ( t ) , λ ( t ) , t ] = L [ x ( t ) , u ( t ) , t ] + λ ( t ) T f [ x ( t ) , u ( t ) , t ] H[x(t),u(t),\lambda(t),t]=L[x(t),u(t),t]+\lambda(t)^Tf[x(t),u(t),t] H[x(t),u(t),λ(t),t]=L[x(t),u(t),t]+λ(t)Tf[x(t),u(t),t] 。设 u ∗ ( t ) u^*(t) u(t)为最优控制, x ∗ ( t ) x^*(t) x(t)是最优轨线,则存在与 u = u ∗ ( t ) u=u^*(t) u=u(t) x = x ∗ ( t ) x=x^*(t) x=x(t)对应的最优伴随向量 λ = λ ∗ ( t ) \lambda=\lambda^*(t) λ=λ(t),使得: { x ˙ = ∂ H ∂ λ λ ˙ = − ∂ H ∂ x \begin{cases} \dot{x}=\frac{\partial H}{\partial \lambda} \\ \dot{\lambda}=-\frac{\partial H}{\partial x}\\ \end{cases} {x˙=λHλ˙=xH
其中, u ∗ = arg ⁡ min ⁡ u ∈ Ω H [ x ∗ ( t ) , u ( t ) , λ ∗ ( t ) ] u^*=\arg\min_{u\in \Omega}H[x^*(t),u(t),\lambda^*(t)] u=argminuΩH[x(t),u(t),λ(t)]

上述方程同时还满足边界条件 x ( t 0 ) = x 0 , G [ x ( t f ) , t f ] = 0 x(t_0)=x_0,G[x(t_f),t_f]=0 x(t0)=x0,G[x(tf),tf]=0

横截条件 λ ( t f ) = ∂ Φ ( t f ) ∂ x + [ ∂ G ( t f ) ∂ x ] T v \lambda(t_f)=\frac{\partial \Phi(t_f)}{\partial x}+[\frac{\partial G(t_f)}{\partial x}]^Tv λ(tf)=xΦ(tf)+[xG(tf)]Tv

数值解法

直接法

在考虑控制量约束 g [ x ( t ) , u ( t ) , t ] ≥ 0 g[x(t),u(t),t]\ge 0 g[x(t),u(t),t]0和终端约束 G [ x ( t f ) , t f ] = 0 G[x(t_f),t_f]=0 G[x(tf),tf]=0存在的条件下,需要对原来的性能指标 J [ u ( t ) ] J[u(t)] J[u(t)]加罚函数项得到 J ˉ [ u ( t ) ] \bar{J}[u(t)] Jˉ[u(t)]
J ˉ [ u ( t ) ] = J [ u ( t ) ] + μ ∑ i = 1 r G i [ x ( t f ) , t f ] 2 + η ∫ t 0 t f ∑ i = 1 l min ⁡ ( g i , 0 ) 2 d t \bar{J}[u(t)]=J[u(t)]+\mu\sum_{i=1}^rG_i[x(t_f),t_f]^2+\eta\int_{t_0}^{t_f}\sum_{i=1}^l\min(g_i,0)^2dt Jˉ[u(t)]=J[u(t)]+μi=1rGi[x(tf),tf]2+ηt0tfi=1lmin(gi,0)2dt
直接法多采用梯度法及其变型进行求解,具体的计算步骤如下:

Step1. 根据经验选定初始控制 u 0 ( t ) u^0(t) u0(t),允许误差 ε > 0 \varepsilon>0 ε>0

Step2. 将 u 0 ( t ) u^0(t) u0(t)代入状态方程并求解得到 x 0 ( t ) x^0(t) x0(t)

Step3. 计算 J ˉ [ u 0 ( t ) ] \bar{J}[u^0(t)] Jˉ[u0(t)],并根据协态方程从 t f t_f tf t 0 t_0 t0反向积分计算 λ 0 ( t ) \lambda^0(t) λ0(t)

Step4. 计算 u 0 u^0 u0处的梯度 ∇ J ˉ [ u 0 ( t ) ] = ∂ H [ x 0 ( t ) , u 0 ( t ) , λ 0 ( t ) , t ] ∂ u \nabla \bar{J}[u^0(t)]=\frac{\partial H[x^0(t),u^0(t),\lambda^0(t),t]}{\partial u} Jˉ[u0(t)]=uH[x0(t),u0(t),λ0(t),t]

Step5. 确定搜索步长 α 0 = arg ⁡ min ⁡ α > 0 J ˉ [ u 0 − α ∇ J ˉ [ u 0 ( t ) ] ] \alpha^0=\arg\min_{\alpha >0} \bar{J}[u^0-\alpha\nabla \bar{J}[u^0(t)]] α0=argminα>0Jˉ[u0αJˉ[u0(t)]]

Step6. 修正控制向量 u 1 ( t ) = u 0 ( t ) − α 0 ∇ J ˉ [ u 0 ( t ) ] u^1(t)=u^0(t)-\alpha^0\nabla \bar{J}[u^0(t)] u1(t)=u0(t)α0Jˉ[u0(t)]

Step7. 若满足终止条件 ∣ ∣ ∇ J ˉ [ u 0 ( t ) ] ∣ ∣ ≤ ε ||\nabla \bar{J}[u^0(t)]||\leq \varepsilon ∣∣∇Jˉ[u0(t)]∣∣ε,则结束循环;否则,令 u 0 = u 1 u^0=u^1 u0=u1回到Step2.

Step2Step3往往是比较难计算的。

另外,若 u ( t ) u(t) u(t)满足上下界限约束,则在Step6中需要对 u ( t ) u(t) u(t)进行限幅。而针对横截条件中的 v v v可以采用 2 μ G 2\mu G 2μG估算:
λ i ( t f ) = ∂ Φ ( t f ) ∂ x i + ∑ j = 1 r 2 μ G j [ x ( t f ) , t f ] ∂ G j ( t f ) ∂ x i \lambda_i(t_f)=\frac{\partial \Phi(t_f)}{\partial x_i}+\sum_{j=1}^r2\mu G_j[x(t_f),t_f]\frac{\partial G_j(t_f)}{\partial x_i} λi(tf)=xiΦ(tf)+j=1r2μGj[x(tf),tf]xiGj(tf)

间接法

直接法中修正后的控制向量 u u u不一定满足约束 g ≥ 0 g\geq 0 g0,而是通过施加罚函数,限幅等手段进行迭代。而间接法则是尽量充分保证 u u u能满足约束 g ≥ 0 g\geq 0 g0,这里给出间接法中的拟线性化方法实现逼近。该方法的核心是首先求出 u ( x , λ , t ) u(x,\lambda,t) u(x,λ,t)带入正则方程,引入增广状态 Y ( t ) = [ x ( t ) , λ ( t ) ] T , Y ( t ) ∈ R 2 n Y(t)=[x(t),\lambda(t)]^T,Y(t)\in R^{2n} Y(t)=[x(t),λ(t)]T,Y(t)R2n,将正则方程转化为 Y ˙ = g ( Y , t ) \dot{Y}=g(Y,t) Y˙=g(Y,t),再将该方程进一步线性化得到:
Y ˙ K + 1 = ( ∂ g ∂ Y ) K Y K + 1 + [ g ( Y K , t ) − ( ∂ g ∂ Y ) K Y K ] \dot{Y}^{K+1}=(\frac{\partial g}{\partial Y})_KY^{K+1}+[g(Y^K,t)-(\frac{\partial g}{\partial Y})_KY^{K}] Y˙K+1=(Yg)KYK+1+[g(YK,t)(Yg)KYK]
其中, Y K Y^K YK代表第 K K K步迭代的解。若对于给定的 ε > 0 \varepsilon>0 ε>0,当 ∣ ∣ Y k + 1 ( t ) − Y k ( t ) ∣ ∣ ≤ ε ||Y^{k+1}(t)-Y^k(t)||\leq \varepsilon ∣∣Yk+1(t)Yk(t)∣∣ε时停止计算。

相关文章:

两端约束的最优控制问题及其数值解法

问题的基本形式 设 n n n维系统状态房产 x ˙ ( t ) f [ x ( t ) , u ( t ) , t ] \dot{x}(t)f[x(t),u(t),t] x˙(t)f[x(t),u(t),t],控制向量 u ( t ) ∈ Ω u(t)\in\Omega u(t)∈Ω是分段连续函数, Ω ∈ R m \Omega\in R^m Ω∈Rm是有界闭集&#xf…...

电磁仿真--基本操作-CST-(6)-导线周围磁场

目录 1. 简介 2. 过程 2.1 新建工程 2.2 选择求解器 2.3 设置单位 2.4 设置频率 2.5 绘制导线 2.6 Background 2.7 边界条件 2.8 设置激励源 2.9 查看结果 3. 其他设置 3.1 网格类型 3.2 集总网络元件 3.3 阻抗和导纳矩阵 3.4 自适应网格细化 3.4 提升计算效率…...

用Java手写jvm之模拟方法调用指令invokexxx和方法返回指令xreturn

写在前面 源码 。 本文一起看下方法调用相关的指令invokexxx以及方法返回(栈帧弹出线程栈)相关的指令xReturn 。 1:正文 因为invokexxx指令和普通的指令不同,会创建一个新的栈帧,并压倒操作数栈中,所以我…...

自定义枚举类型检查

/*** 工单状态,使用字典:order_item_state*/ CheckEnum(nullAble true, enumType OrderItemStateEnum.class) private String workState; 注解类 package com.gdyunst.core.tool.validation;import javax.validation.Constraint; import javax.valid…...

探索四川财谷通抖音小店:安全与信赖的购物新体验

在数字经济蓬勃发展的今天,抖音平台凭借其庞大的用户基础和强大的内容生态,逐渐成为了电商领域的一股不可忽视的力量。其中,四川财谷通抖音小店作为这一浪潮中的佼佼者,不仅以其丰富的商品种类和独特的品牌魅力吸引了众多消费者的…...

systemd-manage系统服务图形化管理工具使用教程

1. systemd-manage介绍 systemd-manage是一个开源的基于systemd服务管理的图形化工具,使用qt图形库进行开发,可以提供服务管理,用户会话,配置文件修改,日志查询,性能分析,进程管理等功能。图形…...

移除元素(LeetCode)

题目 给你一个数组 和一个值 ,你需要 原地 移除所有数值等于 的元素,并返回移除后数组的新长度。 不要使用额外的数组空间,你必须仅使用 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。 解…...

代码随想录27期|Python|Day38|509斐波那契|738.爬楼梯|746.746. 使用最小花费爬楼梯

贴一下动态规划的步骤(5步),就像是之前递归一样,需要每次落实到位。 确定dp数组(dp table)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组 ​​​​​509. 斐波那契 注意到n的范…...

windows docker容器部署前端项目

一、介绍 Docker 是一个开源的平台,旨在简化应用程序的开发、部署和运行。它通过使用容器(containers)来实现这一点。容器是一种轻量级、可移植的虚拟化方式,可以在不同的环境中一致地运行软件。 Docker 的主要作用和优点包括&a…...

科普文:微服务之全文检索ElasticSearch 集群的搭建

一、集群有什么用 1.1 群集的含义与产生 群集(或称为集群)是由多台主机构成,但对外,只表现为一个整体,只提供一个访问入口(域名或IP),相当于一台大型计算机。互联网应用中&#xf…...

QtObject是干什么的?

QtObject 是 Qt Quick 中的一个基类,用于创建非视觉对象。这意味着 QtObject 不渲染任何视觉内容,它主要用于定义数据和逻辑,而不是用户界面元素。你可以把 QtObject 看作是 QML 中的一个基础组件,用于创建和管理不需要显示的对象…...

锐捷RCNA | 远程登录与路由技术

锐捷RCNA | 远程登录与路由技术 一、远程登录配置1. Telnet远程登录介绍2. 案例1--设置远程登录密码实现远程登录3. 案例2--定义不同用户账户实现远程用户权限隔离4. SSH远程登录介绍5. 案例--通过SSH功能远程管理设备 二、路由技术1. 直连路由的数据通信2. 间接路由的数据通信…...

实现Vue-tiny-diff算法

前言 前面我们实现了基本的数据更新到视图渲染的逻辑,但是这种方式(innerHTML)是极其低效的, 因此,我们相应引入 dom 和 diff 算法, 数据到视图的过程变为: state -> vdom -> dom vNode 层 所谓 vNode, 就是一个表示 dom 结构的轻量对象 {tag, props, children; }为…...

正则表达式测试工具

前言 正则表达式测试工具可供您输入正则表达式和测试文本,立即查看匹配结果. 下面是离线的HTML文件,同样可以提供相同的服务. 目录 使用说明 HTML代码 正则表达式的编写经验和方法 总结 使用说明 1.先将HTML代码存储成.html为后缀的文件; 2.然后用浏览器打开这个…...

Github 2024-08-02 开源项目日报 Top9

根据Github Trendings的统计,今日(2024-08-02统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目4Go项目1C项目1Rust项目1Shell项目1Dockerfile项目1TypeScript项目1Dart项目1Docker-OSX: 在Docker容器中运行Mac OS X 创建周期:152…...

重生之我 学习【数据结构之顺序表(SeqList)】

⭐⭐⭐ 新老博友们,感谢各位的阅读观看 期末考试&假期调整暂时的停更了两个多月 没有写博客为大家分享优质内容 还容各位博友多多的理解 美丽的八月重生之我归来 继续为大家分享内容 你我共同加油 一起努力 ⭐⭐⭐ 数据结构将以顺序表、链表、栈区、队列、二叉树…...

前端day4-表单标签

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>day4-表单</title> </head> <body&g…...

vue3-print-nb 表格打印分页,第一页有空白的情况出现解决方法(两种:一种原生,一种基于element表格)

第一种&#xff1a;基于element表格分页 <template><!-- element分组打印 --><div class"hello"><button v-print"printContent">打印</button><div id"printDiv"><p>工资统计表</p><p>…...

搜维尔科技:借助 Xsens中的远程人体录制功能,可以在任何位置以无限量同时捕捉无限数量演员的身体动作

借助 Xsens中的远程人体录制功能&#xff0c;可以在任何位置以无限量同时捕捉无限数量演员的身体动作 搜维尔科技&#xff1a;借助 Xsens中的远程人体录制功能&#xff0c;可以在任何位置以无限量同时捕捉无限数量演员的身体动作...

2024/08 近期关于AI的阅读和理解[笔记]

#Cohere 就像商业能力很强的云数仓公司 Snowflake 一样&#xff0c;Cohere 也采用了按需付费模式而不是按月或按年付费&#xff0c;而且它的付费模式很精细。Cohere 按照模型的不同能力&#xff0c;包括文本生成&#xff0c;文本总结&#xff0c;重新排名&#xff0c;文本分类…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...