【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码
【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码
目录
- 【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果


基本描述
[24年最新算法] [ 独家原创]基于APO-Transformer-L STM多特征分类预测(多 输入单输出) Matlab代码,北极海鹦优化算法(APO);发表在SCI二区期刊《Advances in
Engineering Software》;发表时间为2024年9月(见刊)。
[独家原创] APO-Transformer-L STM分类Matlab代码基于北极海鹦优化算法优化Transformer结合长短期记忆神经网络,Matlab代码, 可直接运行,适合小白新手。
1.程序已经调试好,无需更改代码替换数据集即可运行! ! !数据格式为excel!
2.Transformer作为一-种创新的神经网络结构,深受欢迎。采用Transformer编码器对光伏、负荷数据特征间的复杂关系以及时间序列中的长短期依赖关系进行挖掘,可以提高光伏功率、负荷预测的准确性。
3.APO作为24年新算法,北极海鹦优化算法(Arctic Puffin Optimization, APO)是一种新型的元启发式算法(智能优化算法),模拟了北极海鹦的空中飞行和水下觅食行为。这个算法夹杂了许多策略,发表的期刊等级也比较高,值得一-试! 该成果由Wen-chuan Wang等人于2024年9月发表在SCI二区期刊《Advances in Engineering Software》.上目前没人用, 需要论文的抓紧了!这就是机会!
1、运行环境要求MATLAB版本为2023b及其以 上。[ 如果没有可私信我,我赠送]
2、代码中文注释清晰,质量极高
3、运行结果图包括分类效果图,迭代优化图,混淆矩阵图等.

注:程序和数据放在一个文件夹。
程序设计
- 完整程序和数据私信博主回复基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('数据集.xlsx');%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)
outdim = 1; % 最后一列为输出
f_ = size(res, 2) - outdim; % 输入特征维度
%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%% 划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本mid_size = size(mid_res, 1); % 得到不同类别样本个数mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)]; % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)]; % 训练集输出P_test = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)]; % 测试集输入T_test = [T_test; mid_res(mid_tiran + 1: end, end)]; % 测试集输出
end%% 得到训练集和测试样本个数
M = size(P_train, 1);
N = size(P_test , 1);%% 数据预处理
% 数据预处理,将训练集和测试集归一化到[0,1]区间
[mtrain,ntrain] = size(P_train);
[mtest,ntest] = size(P_test);
dataset = [P_train;P_test];
% mapminmax为MATLAB自带的归一化函数
[dataset_scale,ps] = mapminmax(dataset',0,1);
dataset_scale = dataset_scale';
P_train = dataset_scale(1:mtrain,:);
P_test = dataset_scale( (mtrain+1):(mtrain+mtest),: );
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码
【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码 目录 【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码分类效果基本描述程序设计参考资料 分类效果 基本描述 [24年最…...
【大模型】大模型指令微调的“Prompt”模板
文章目录 一、微调数据集格式二、常用的指令监督微调模板2.1 指令跟随格式(Alpaca)2.2 多轮对话格式(ShareGPT)2.3 其他形式2.4 常见模板 参考资料 一、微调数据集格式 在进行大模型微调的过程中,我们会发现“Prompt”…...
Spring的设计模式----工厂模式及对象代理
一、工厂模式 工厂模式提供了一种将对象的实例化过程封装在工厂类中的方式。通过使用工厂模式,可以将对象的创建与使用代码分离,提供一种统一的接口来创建不同类型的对象。定义一个创建对象的接口让其子类自己决定实例化哪一个工厂类,…...
【算法】浅析广度优先搜索算法
广度优先搜索算法:层层推进,全面探索 1. 引言 在计算机科学和算法设计中,广度优先搜索(Breadth-First Search,简称BFS)是一种用于遍历或搜索树或图的算法。这种算法从起点开始,优先访问所有距…...
分布式时序数据库TimeLyre 9.2发布:原生多模态、高性能计算、极速时序回放分析
在当今数据驱动的世界中,多模态数据已经成为企业的重要资产。随着数据规模和多样性的不断增加,企业不仅需要高效存储和处理这些数据,更需要从中提取有价值的洞察。工业领域在处理海量设备时序数据的同时,还需要联动分析警报信息、…...
PMP考试题库每日五题+答案解析
第1题(单选题)某技术开发项目正在开展,目前项目所用成本还在预算范围内,但是已经落后项目进度计划三周。项目集经理在最近的项目状态报告中了解到这一项目信息,他要求项目经理必须在计划的交付日期之前完成可交付成果。…...
机器学习用python还是R,哪个更好?
目录 1. 语言特点 1.1 Python的语言特点 1.2 R的语言特点 2. 库支持 2.1 Python的库支持 2.2 R的库支持 3. 性能 3.1 Python的性能 3.2 R的性能 4. 社区支持 4.1 Python的社区支持 4.2 R的社区支持 5. 学习曲线 5.1 Python的学习曲线 5.2 R的学习曲线 6. 实际应…...
【数据结构】mapset详解
🍁1. Set系列集合 Set接口是一种不包含重复元素的集合。它继承自Collection接口,所以可以使用Collection所拥有的方法,Set接口的实现类主要有HashSet、LinkedHashSet、TreeSet等,它们各自以不同的方式存储元素,但都遵…...
数据结构(邓俊辉)学习笔记】词典 02—— 散列函数
文章目录 1. 冲突难免2. 何为优劣3. 整除留余4. 以禅为师5. M A D6. 平方取中7. 折叠汇总8. 伪随机数9. 多项式10. Vorldmort 1. 冲突难免 好,接下来的这一节我们就来介绍散列策略中的第一项,也是最重要的技术,散列函数的设计与定制。 在上…...
Python学习(1):使用Python的Dask库实现并行计算
目录 一、Dask介绍 二、使用说明 安装 三、测试 1、单个文件中实现功能 2、运行多个可执行文件 最近在写并行计算相关部分,用到了python的Dask库。 Dask官网:Dask | Scale the Python tools you love 一、Dask介绍 Dask是一个灵活的并行和分布式…...
数据结构 - 哈希表
文章目录 前言一、哈希思想二、哈希表概念三、哈希函数1、哈希函数设计原则2、常用的哈希函数 四、哈希冲突1、什么是哈希冲突2、解决哈希冲突闭散列开散列 五、哈希表的性能分析时间复杂度分析空间复杂度分析 前言 一、哈希思想 哈希思想(Hashing)是计…...
电商选品这几点没做好,等于放弃80%的流量!
在竞争激烈的电商领域,选品是决定店铺命运的核心环节。到底是哪些关键要点能够帮助我们在选品时抢占流量高地,稳步出单呢? 一、深入了解市场需求 选品的第一步是对市场进行深入调研。要关注当前的消费趋势、热门品类以及潜在的需求缺口。通…...
【教程】最新可用!Docker国内镜像源列表
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 目录 镜像加速器地址 用法示例 一、自动配置地址 二、配置单次地址 镜像加速器地址 Docker镜像加速站https://hub.uuuadc.top/docker.1panel.live…...
使用RabbitMQ在Spring Boot入门实现简单的消息的发送与接收
文章目录 要引入spring-boot-starter-amqp依赖才能开始后续操作 1. 配置RabbitMQ地址2. 编写消息发送测试类3. 实现消息接收 在本文中,我们将介绍如何在Spring Boot应用中使用RabbitMQ实现消息的发送与接收。我们将创建两个服务,一个用于发送消息&#x…...
基于物联网的水质监测系统设计与实现:React前端、Node.js后端与TCP/IP协议的云平台集成(代码示例)
一、项目概述 随着环境保护意识的增强,水质监测在水资源管理和污染防治中变得尤为重要。本项目旨在设计一个基于物联网的水质监测系统,能够实时监测水中的pH值、溶解氧、电导率和浊度等参数,并将数据传输至云端,以便进行分析和可…...
Vcpkg安装指定版本包或自定义安装包
在使用 vcpkg 安装特定版本的包或自定义包时,你可以按照以下步骤进行操作: 安装特定版本的包 列出可用的版本: 使用以下命令列出特定包的所有可用版本: vcpkg search <package-name>安装特定版本: 使用 vcpkg …...
【C++深度探索】红黑树实现Set与Map的封装
🔥 个人主页:大耳朵土土垚 🔥 所属专栏:C从入门至进阶 这里将会不定期更新有关C/C的内容,欢迎大家点赞,收藏,评论🥳🥳🎉🎉🎉 文章目录…...
终于有人把客户成功讲明白了
作者:沈建明 对ToB企业来说,只有客户成功才能带来持久增长,在SaaS企业下行大背景下,客户成功是唯一的救命稻草。大家是不是都听过这样的说法? ToB和SaaS企业的老客户贡献对于企业至关重要。因为获取新客户的成本是留…...
[新械专栏] 肾动脉射频消融仪及一次性使用网状肾动脉射频消融导管获批上市
近日,国家药品监督管理局批准了上海魅丽纬叶医疗科技有限公司“肾动脉射频消融仪”和“一次性使用网状肾动脉射频消融导管”两个创新产品注册申请。 肾动脉射频消融仪由主机、脚踏开关、主机连接线、中性电极连接线以及电源线组成。一次性使用网状肾动脉射频消融导…...
leetcode-119-杨辉三角II
原理: 1、初始化每行一维数组nums[1]; 2、从第2行开始,在nums的头插入0(因为杨辉三角每行的第一个1相当于是上一行的1与其前面的0相加之和)后进行相加操作。 代码:...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...
