【ML】self-supervised Learning for speech and Image
【ML】self-supervised Learning for speech and Image
- 1. self-supervised Learning for speech and Image
- 1.1 自监督学习在语音处理领域的方法及其特点
- 1.2 自监督学习在图像处理领域的方法及其特点
- 2. Predictive Approach
- 2.1 特点
- 2.2 适用场景
- 3. contrastive Learning
- 4. 语音 bert 发展历程回顾及其特点
- 5. bootstrapping Approaches
- 6. simple extra regularization (Variance-Invariance-Covariance Regularization(VICReg))
- VICReg的特点
- VICReg的优势和特点
- 适用场景
1. self-supervised Learning for speech and Image
自监督学习(Self-supervised Learning)是一种无监督学习方法,它通过让模型学习数据自身的特征来提高模型的性能,而不需要人工标注的数据。这种方法在语音和图像处理领域都有广泛的应用。以下是关于自监督学习在语音和图像处理领域的一些主要方法及其特点:
1.1 自监督学习在语音处理领域的方法及其特点
- Wav2vec 2.0:通过预测连续的语音帧来学习语音表示。
- HuBERT:通过掩码预测学习隐藏单元来提高语音表示的质量。
- Intermediate Layer Supervision for Self-Supervised Learning (ILS-SSL):通过在中低层加入监督信息,使模型学习更多关于“内容”的信息,从而提高语音识别的性能。
1.2 自监督学习在图像处理领域的方法及其特点
- Generative Methods:关注像素空间的重建误差,如Autoencoder和VAE,通过重建原始数据来学习特征。
- Contrastive Methods:不要求模型能够重建原始输入,而是希望模型能够在特征空间上对不同的输入进行分辨,如SimCLR和MoCo,通过对比学习来提高特征表示的质量。
自监督学习通过让模型学习数据自身的特征来提高模型的性能,这种方法在语音和图像处理领域都有广泛的应用。通过了解这些方法及其特点,可以更好地利用自监督学习来解决实际问题。
在这里插入图片描述
2. Predictive Approach
**Predictive Approach(预测性方法)**是一种基于数据分析和统计模型的策略,旨在利用历史数据和现有信息来预测未来的事件或趋势。这种方法通常用于帮助组织或个人做出更明智的决策。
2.1 特点
-
数据驱动:
- 预测性方法依赖于大量的历史数据,通过分析这些数据来识别潜在的模式和趋势。
-
模型导向:
- 采用统计模型、机器学习算法或其他数学工具来生成预测。这些模型可以包括回归分析、时间序列分析、决策树、神经网络等。
-
应用广泛:
- 预测性方法广泛应用于多个领域,如金融、市场营销、供应链管理、健康护理等。例如,在市场营销中,预测模型可以用于预测客户行为,以制定更有效的营销策略。
-
决策支持:
- 预测性方法可以为决策提供有力支持,帮助组织在风险管理、资源分配和战略规划等方面做出更精确的决策。
-
动态更新:
- 随着新数据的获取,预测模型可以不断更新和优化,以提高预测的准确性和实时性。
-
不确定性:
- 虽然预测性方法可以提供对未来的有价值洞察,但其预测结果总是伴随着一定的不确定性。模型的准确性依赖于数据质量和模型的选择,因此需要结合经验和专业知识来解读预测结果。
2.2 适用场景
- 需求预测:在供应链管理中,预测未来的产品需求量,以优化库存和生产计划。
- 风险管理:在金融领域,通过预测市场趋势来制定投资策略,管理潜在的市场风险。
- 客户分析:在营销中,预测客户的购买行为或流失风险,以制定精准的营销策略。
总结来说,预测性方法通过将数据分析与预测模型相结合,为决策提供了基于未来可能性的重要参考,尽管存在一定的不确定性,但在许多领域中已经成为决策过程中不可或缺的一部分。
3. contrastive Learning
Contrastive Learning(对比学习)是一种自监督学习方法,它通过比较不同样本之间的相似性或差异性来学习数据的表示。这种方法在计算机视觉和自然语言处理等领域中得到了广泛的应用。以下是对比学习的一些主要特点:
-
自监督学习:
- 对比学习是一种自监督学习方法,它不需要外部的标注信息,而是通过数据本身的内在结构来学习表示。
-
正负样本对:
- 对比学习通常依赖于正样本对(相似的样本)和负样本对(不相似的样本)比较。模型需要识别出哪些样本是相似的,哪些是不同的。
-
相似性度量:
- 对比学习使用特定的相似性度量(如余弦相似性)来评估样本之间的接近程度,并据此进行学习。
-
编码器设计:
- 对比学习通常需要一个编码器网络来提取样本的特征表示。在自然语言处理中,编码器可能是一个预训练的语言模型。
-
最大化正样本相似性:
- 模型的目标是最大化正样本对之间的相似性度量,同时最小化负样本对之间的相似性度量。
-
负样本采样:
- 在训练过程中,需要有效地采样负样本,以确保学习过程的效率和效果。
-
温度缩放:
- 对比学习中的损失函数通常包括温度缩放因子,用于控制概率分布的平滑程度,影响学习动态。
-
批次内学习:
- 对比学习通常在批次内进行,即每个批次中的样本对用于更新模型参数。
-
无监督特性:
- 由于不需要标注数据,对比学习可以应用于缺乏标注数据的场景,降低了数据准备的成本。
-
表示空间的对齐:
- 对比学习有助于学习到能够将不同视图或模态的数据对齐到同一表示空间的特征表示。
-
跨模态学习:
- 对比学习可以用于跨模态任务,例如将图像和文本映射到共同的特征空间中。
-
模型灵活性:
- 对比学习可以与不同的模型架构和学习目标结合,具有很好的灵活性。
-
可解释性:
- 通过分析正负样本对,对比学习有时可以提供模型学习特征的可解释性。
对比学习的关键优势在于其能够生成鲁棒的特征表示,这些表示可以捕捉到数据的本质属性,并且在多种下游任务中发挥作用。然而,设计有效的对比学习策略需要仔细考虑如何生成正负样本对,以及如何平衡学习过程中的相似性和差异性。
这里如何做 SimCLR 中如何做 augmentation 是一个关键技术,详细可以参考下面这个文章,但是一般情况下 random cropping 是一个非常关键的操作
4. 语音 bert 发展历程回顾及其特点
5. bootstrapping Approaches
Bootstrapping(自举或自助法)是一种在统计学、机器学习和人工智能中常用的技术,特别是在数据量有限的情况下。它通过从原始数据集中重复随机抽样(有放回)来创建多个训练集,然后利用这些训练集来训练模型或估计统计量。以下是自举方法的一些特点:
-
数据增强:
- 自举方法通过有放回地抽样原始数据集,生成多个不同的训练集,这有助于增加数据的多样性。
-
减少过拟合:
- 使用多个不同的训练集可以减少模型对原始训练数据的过度拟合。
-
提高模型泛化能力:
- 自举方法可以帮助模型学习到更一般化的特征,提高其在新数据上的泛化能力。
-
估计模型性能:
- 自举方法可以用来评估模型的稳定性和性能,通过观察在不同自举样本上训练得到的模型性能。
-
计算效率:
- 在某些情况下,自举方法可能比获取更多数据或使用复杂的模型更有效。
-
多样性引入:
- 自举抽样可以引入数据的多样性,尤其是在数据不平衡的情况下。
-
统计推断:
- 自举方法常用于统计推断,如估计置信区间、方差等。
-
模型选择:
- 可以用来辅助模型选择,通过比较不同模型在多个自举样本上的性能。
-
集成方法:
- 自举方法可以与集成学习技术结合,如随机森林中的自举抽样。
-
偏差-方差权衡:
- 自举方法可能会增加模型的方差,特别是当原始数据集较小时。
-
计算成本:
- 由于需要多次训练模型,自举方法可能会增加计算成本。
-
依赖于数据分布:
- 自举方法的有效性依赖于原始数据集的分布,可能不适用于分布不均匀的数据。
-
实现简单:
- 自举方法相对容易实现,不需要复杂的算法或模型调整。
-
适用于小样本问题:
- 当可用的数据量有限时,自举方法可以是一种有效的策略。
自举方法是一种简单而强大的技术,尤其适用于数据量有限或需要提高模型泛化能力的情况。然而,它也有一些局限性,比如可能会增加模型的方差,并且在某些情况下可能不适用。在使用自举方法时,需要仔细考虑其对特定问题的影响。
6. simple extra regularization (Variance-Invariance-Covariance Regularization(VICReg))
Variance-Invariance-Covariance Regularization (VICReg) 是一种用于自监督学习(Self-Supervised Learning)的正则化方法。它主要应用于对比学习(Contrastive Learning)中,以在不需要标签的情况下,学习到更好的数据表示。VICReg通过引入三种正则化项:方差(Variance)、不变性(Invariance)、协方差(Covariance),来改善模型的训练效果。
VICReg的特点
-
方差正则化(Variance Regularization):
- 这部分确保每个特征维度的方差足够大,从而避免模型学习到退化的表示,即所有输出都是相同的常量。方差的增加能够提高特征的多样性,使模型可以更好地捕捉数据的多样性。
-
不变性正则化(Invariance Regularization):
- 这部分鼓励模型在不同视角或不同数据增强方式下,对同一数据点(如同一张图片的不同增强版本)产生一致的表示。这与传统的对比学习目标类似,但在VICReg中,这种不变性正则化通过不依赖负样本对(negative samples)的方式来实现。
-
协方差正则化(Covariance Regularization):
- 这部分通过降低不同特征之间的协方差来促进特征的去冗余化,确保不同特征之间相互独立,不含冗余信息。这有助于提高模型表示的质量,使得模型能够从数据中提取更丰富、更有用的特征。
VICReg的优势和特点
-
无对比学习中的负样本对:VICReg 不像典型的对比学习方法(如SimCLR、MoCo等)那样依赖负样本对来训练,这使得训练过程更加稳定且易于实施。
-
减少退化问题:通过方差正则化和协方差正则化,VICReg 能有效防止模型产生退化的表示(即所有输入被映射到相同的输出)。
-
特征去冗余:协方差正则化的引入确保了特征之间的独立性,从而提高了特征表示的多样性和有效性。
-
简单易用:与其他自监督学习方法相比,VICReg的设计较为简洁,不需要复杂的采样策略或特殊的架构修改。
适用场景
VICReg主要适用于自监督学习任务,尤其是当没有标注数据时,可以通过这种方法学习到有效的特征表示。它在图像分类、目标检测、自然语言处理等领域中,都可以作为预训练方法的一部分,从而为下游任务提供优质的特征表示。
总结来说,VICReg是一种通过同时控制表示的方差、不变性和协方差,来学习稳健和多样化特征的正则化方法,特别适合在自监督学习中用于构建高质量的特征表示。
相关文章:

【ML】self-supervised Learning for speech and Image
【ML】self-supervised Learning for speech and Image 1. self-supervised Learning for speech and Image1.1 自监督学习在语音处理领域的方法及其特点1.2 自监督学习在图像处理领域的方法及其特点 2. Predictive Approach2.1 特点2.2 适用场景 3. contrastive Learning4. 语…...
青岛实训day24(8/8)
一.Python环境准备 1.查看有没有python3 yum list installed |grep python yum list |grep python3 最新安装3.12可以使用源码安装 2.下载安装python3 yum -y install python3 3.查看版本 [rootpython ~]# python3 --version Python 3.6.8 4.进入编辑 [r…...
*算法训练(leetcode)第四十五天 | 101. 孤岛的总面积、102. 沉没孤岛、103. 水流问题、104. 建造最大岛屿
刷题记录 101. 孤岛的总面积DFSBFS 102. 沉没孤岛DFSBFS *103. 水流问题*104. 建造最大岛屿 101. 孤岛的总面积 题目地址 本题要求不与矩阵边缘相连的孤岛的总面积。先将与四个边缘相连的岛屿变为海洋,再统计剩余的孤岛的总面积。无需再标识访问过的结点ÿ…...
设计模式 由浅入深(待完结)
一、设计模式是什么? 设计模式是指在软件开发中,经过验证的,用于解决在特定环境下,重复出现的,特定问题的解决方案。 二、设计模式有哪些? 1. 观察者模式 定义对象间的一种一对多(变化&#x…...
(第34天)645、最大二叉树
目录 645、最大二叉树题目描述思路代码 645、最大二叉树 题目描述 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点,其值为 nums 中的最大值。 递归地在最大值 左边 的 子数组前缀上 构建左子树。 递归地在最大…...
Python知识点:如何使用Paramiko进行SSH连接与操作
使用Paramiko进行SSH连接与操作可以分为以下几个步骤: 安装Paramiko: 首先需要安装Paramiko库,可以使用pip进行安装: pip install paramiko建立SSH连接: 使用Paramiko连接远程服务器,需要提供服务器的地址、…...

代码随想录算法训练营第六天(一)|242.有效的字母异位词
LeetCode 242 有效的字母异位词 题目: 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。 注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t 互为字母异位词。 示例 1: 输入: s "anagram&q…...
数据结构 | 考研代码题之顺序表 | 1 查找L中值为e的数据元素若找到则返回其下标,若找不到则返回-1
文章目录 1 题目2 题解 1 题目 假设有一个顺序表 L,其存储的所有数据元素均为不重复的正数,查找L中值为e的数据元素,若找到则返回其下标,若找不到则返回-1。 2 题解 C语言代码: /*假设有一个顺序表 L,其…...

RLVF:避免过度泛化地从口头反馈中学习
人工智能咨询培训老师叶梓 转载标明出处 大模型在不同行业和个人中的广泛应用要求模型能够根据具体的用户反馈进行调整或定制,以满足细微的要求和偏好。虽然通过高层次的口头反馈来指定模型调整非常方便,例如“在给老板起草电子邮件时不要使用表情符号”…...
设计原则与思想-从项目实战中学习设计模式
文章目录 开源项目通过剖析Java JDK源码学习灵活应用设计模式1. 单例模式(Singleton Pattern)示例:`java.lang.Runtime`2. 工厂模式(Factory Pattern)示例:`java.util.Date`3. 观察者模式(Observer Pattern)示例:`java.util.Observable` 和 `java.util.Observer`4. 适…...
python中的类属性、实例属性、类方法、实例方法和静态方法
1. 类属性(类变量)和实例属性(实例变量) 在python中,类中的属性就是定义在类中的变量,简称成员变量;类中的行为就是定义在类中的方法,简称成员方法。成员变量又可分为类变量和实例变量,或者分为类属性和实例属性。成员…...

A股继续底部震荡,探底是否能成功?
真心的给股民朋友提个醒,不管你胆大还是胆怯,盘面上出现了1个反常信号,一起来看看: 1、今天两市低开高走,开始筑底了,任何一个主力,都是在无人问津的熊市布局,而在人声鼎沸的牛市离场…...

NPDP考前怎么复习?NPDP200问PDF版来啦~
距离NPDP下半年考试还有4个月的时间,现在正是备考的黄金期。 以下复习建议~ 01.制定详细计划 首先,根据考试大纲,可以将内容划分为几个模块,如新产品开发流程、市场研究、产品规划等,并为每个模块设定学习目标和时间…...

ajax图书管理项目
bootstrap弹框 不离开当前页面,显示单独内容,让用户操作 功能:不离开当前页面,显示单独内容,供用户操作步骤: 1.引入bootstrap.css和bootstrap.js …...

深入理解 Java SPI - 概念、原理、应用
零、前言 在当今互联网时代,应用程序越来越复杂,对于我们开发人员来说,如何实现高效的组件化和模块化已经成为了一个重要的问题。而 Java SPI(Service Provider Interface)机制,作为一种基于接口的服务发现…...
JavaScript - 判断数组中是否包含某个的元素的几种方式
目录 1. 使用 includes 方法 2. 使用 indexOf 方法 3. 使用 find 方法 4. 使用 some 方法 5. 使用 filter 方法 6. 使用 every 方法 应该算是前端开发过程中比较常用的基本操作,话不多说,看代码。 1. 使…...
如何用AI颠覆企业未来:从大企业到中小型企业的实战攻略
如何用AI颠覆企业未来:从大企业到中小型企业的实战攻略 AI大佬经验分享:聊聊企业定制化AI需求和应用场景 今天想跟大家聊聊我在AI领域的一些经验和见解,希望能对大家有所启发。最近,不少企业都对AI很感兴趣,我也经常…...

Linux磁盘管理_LVM逻辑卷_SWAP交换分区_Centos-LVM格式磁盘扩容
目录 一、基本磁盘管理1.1 创建分区1.2 创建文件系统1.3 挂载mount1.4 查看挂载信息1.5 重启失效解决方式 二、逻辑卷LVM2.1 LVM2.2 创建LVM2.3 扩大卷组VG2.4 命令汇总 三、交换分区SWAP管理3.1 SWAP3.2 查看swap3.3 增加交换分区 四、Centos调整分区,在线调整分区…...

C++ 函数模板和类模板
参考视频:C类模板_哔哩哔哩_bilibili 遗留问题:编译器怎么处理函数模板和类模板 目录 一、为什么会有函数模版?函数模板是为了解决什么问题? 二、函数模板的概念 三、函数模版的使用 四、函数模板的特化 五、类模板的概念 …...

安卓Termux系统设备安装内网穿透工具实现远程使用SFTP传输文件
文章目录 前言1. 安装openSSH2. 安装cpolar3. 远程SFTP连接配置4. 远程SFTP访问4. 配置固定远程连接地址 前言 本教程主要介绍如何在安卓 Termux 系统中使用 SFTP 文件传输,并结合cpolar内网穿透工具生成公网地址,轻松实现无公网IP环境远程传输…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...