当前位置: 首页 > news >正文

24/8/5算法笔记 逻辑回归sigmoid

今日是代码对sigmoid函数的实现和运用

#linear_model线性回归
#名字虽然叫逻辑回归,作用于分类
#分类:类别
#回归:预测
from sklearn.linear_model import LogisticRegression

实现函数

import numpy as np
import matplotlib.pyplot as pltdef sigmoid(x):return 1/(1+np.exp(-x))x = np.linspace(-5,5,100)y = sigmoid(x)plt.plot(x,y,color='green')

损失函数

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#Z-score归一化
from sklearn.preprocessing import scale,StandardScaler

加载数据

X,y=datasets.load_breast_cancer(return_X_y=True)X=X[:,:2]#切片两个特征
display(X.shape)
display(y.shape)

建模

model = LogisticRegression()#训练,和之前线性回归,类似
#后面其他方法,算法,类似
model.fit(X,y)

逻辑回归线性方程拿出来:系数
w1 = model.coef_[0,0]
w2 = model.coef_[0,1]
b = model.intercept_
print('方程系数',w1,w2)
print('截距',b)

sigmoid函数

def sigmoid(X,w1,w2,b):z = w1*X[0] + w2*X[1] + b#方程表示return 1/(1+ np.exp(-z))

损失函数

def loss_function(X,y,w1,w2,b):loss = 0for X_i,y_i in zip(X,y):p = sigmoid(X_i,w1,w2,b)#概率p=np.clip(p,0.0001,0.999)#裁剪loss+= -y_i * np.log(p) +(1-y_i)* np.log(1-p)return loss

定义参数w1,w2取值空间

w1_space= np.linspace (w1 - 2,w1 +2,100)w2_space = np.linspace(w2 - 2,w2 +2,100)

损失计算

loss1_ = np.array([loss_function(X,y,i,w2,b) for i in w1_space])
loss1_

loss2_ = np.array([loss_function(X,y,w1,i,b) for i in w2_space])
loss2_

可视化¶

fig1 = plt.figure(figsize=(12,9))plt.subplot(2,2,1)
plt.plot(w1_space,loss1_,color='green')plt.subplot(2,2,2)
plt.plot(w1_space,loss1_,color='red')

逻辑回归代码实现

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
#将数据拆分
from sklearn.model_selection import train_test_split
X,y = datasets.load_iris(return_X_y=True)
cood = y!=2#过滤数据:类别是2,过滤掉
X=X[cood]
y=y[cood]
y

加载数据并拆分
#将调练数据测试数据:80% 训练数据,保留20%,测试数据
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)display(X_train.shape,X_test.shape)
display(y_train.shape,y_test.shape)

训练
model = LogisticRegression()model.fit(X_train,y_train)y_pred = model.predict(X_test)
print('预测结果是:',y_pred)proba_ = model.predict_proba(X_test)
print('预测概率是:\n',proba_)

y_pred

proba_.argmax(axis=1)

概率手动计算
def sigmoid(x):return 1/(1+np.exp(-z))#方程系数和截距
w=model.coef_
b=model.intercept_#求解线性方程
z=X_test.dot(w.reshape(-1))+bp=sigmoid(z)#列合并
#np.column_stack([1-p,p])
np.concatenate([(1-p).reshape(-1,1),p.reshape(-1,1)],axis = 1)[:5]

model.predict_proba(X_test)

相关文章:

24/8/5算法笔记 逻辑回归sigmoid

今日是代码对sigmoid函数的实现和运用 #linear_model线性回归 #名字虽然叫逻辑回归,作用于分类 #分类:类别 #回归:预测 from sklearn.linear_model import LogisticRegression 实现函数 import numpy as np import matplotlib.pyplot as pl…...

适用于验证码的OCR,识别快速,使用简单!

环境 windows 11python 3.9 前言 Muggle OCR 是一个高效本地 OCR 模块,旨在通过简单的几步设置提供强大的文本识别功能,无论是在处理印刷文本还是解析验证码,都能让用户在工作中畅通无阻。Muggle OCR 易于安装和使用,支持双模型&a…...

超简单适合练手的双指针题:判断子序列

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列&#…...

打破老美垄断,潘展乐商业价值起飞

文|琥珀食酒社 作者 | 积溪 奥运会上的潘展乐 真是牛逼坏了 拿下男子100米自由游金牌 打破欧美长达近百年垄断 搞定男子4x100米混合泳金牌 终结了美国在这项目上 10年不败的神话 比赛前 美国选手对他爱答不理 招呼都不打 比赛后美国选手想套热乎 潘展乐…...

java面试题:简化URL

1 问题场景 编写一种方法,将字符串中的空格全部替换为%20。假定该字符串尾部有足够的空间存放新增字符,并且知道字符串的“真实”长度。 注意:字符串长度在 [0, 500000] 范围内。 2 答案 2.1 解决方案一 直接使用String方法解决 public s…...

用 echarts 开发地图、点击展示自定义信息框

1、下载所需地市的json 链接&#xff1a;DataV.GeoAtlas地理小工具系列 在右侧输入需要的名称&#xff0c;然后下载json文件到本地 2、在html 中准备容器&#xff0c;并设置宽高 <div id"mapContent"> <div ref"mapChart" style"width:10…...

Android 应用兼容性变更调试

引言 本文将介绍如何调试和解决这些兼容性问题,并记录调试过程中实际操作的步骤和方法。在Android应用开发中,随着Android系统版本的不断更新,应用的兼容性问题变得越来越复杂。 推荐:《Android系统开发中高级定制专栏导读》08-03 16:04:53.518 6555 6555 D Compatibili…...

76 多态

多态&#xff08;polymorphism&#xff09;是指基类的同一个方法在不同派生类对象中具有不同的表现和行为。 派生类继承了基类的行为和属性之后&#xff0c;还会增加某些特定的行为和属性&#xff0c;同时还可能会对继承来的某些行为进行一定的改变&#xff0c;这都是多态的表现…...

数据采集工具之Canal

本文主要介绍canal采集mysql数据的tcp、datahub(kafka)模式如何实现 1、下载canal https://aliyun-datahub.oss-cn-hangzhou.aliyuncs.com/tools/canal.deployer-1.1.5-SNAPSHOT.tar.gz canal的原理类似于mysql的主从复制&#xff0c;canal模拟的是从节点拉取主节点的binlog数…...

【后端】消息中间件小册

1.RabbitMQ RabbitMQ 是一个流行的消息中间件系统&#xff0c;采用 AMQP&#xff08;高级消息队列协议&#xff09;来管理消息的传递。它的工作原理涉及多个组件和机制来确保消息的可靠性和完整性。以下是 RabbitMQ 的基本工作原理以及如何保证消息不丢失的机制&#xff1a; R…...

【进阶篇-Day14:JAVA中IO流之转换流、序列化流、打印流、Properties集合的介绍】

目录 1、转换流1.1 转换流分类&#xff1a;1.2 转换流的作用&#xff08;1&#xff09;按照指定的字符编码读写操作&#xff1a;&#xff08;2&#xff09;将字节流转换为字符流进行操作&#xff1a; 2、序列化流2.1 序列化的基本使用&#xff1a;2.2 序列化的操作流程&#xf…...

【Material-UI】Checkbox 组件中的 Label Placement 设置详解

文章目录 一、Checkbox 组件简介1. 组件概述2. labelPlacement 属性 二、labelPlacement 属性的使用方法三、各标签位置的效果与应用场景1. Top&#xff08;顶部&#xff09;2. Start&#xff08;左侧&#xff09;3. Bottom&#xff08;底部&#xff09;4. End&#xff08;右侧…...

XJTUSE-离散数学-集合

基本概念 集合的包含与相等&#xff0c;如子集幂集&#xff1a;以A的所有子集组成的集合称为A的幂集AB <> 集合的基本运算 基本运算证明会考 交运算并运算补运算差运算&#xff1a;A \ B 环和运算&#xff1a;环积运算&#xff1a; 集合的其他表示方法 文图表示法 …...

安徽省消防设施操作员题库

1.()是做人的基本准则&#xff0c;也是社会道德和职业道德的一项基本规范。 A.诚实守信(正确答案) B.爱岗敬业 C.以人为本 D.钻研业务 2.()是指为了追求完美&#xff0c;坚持工匠精神&#xff0c;在工作中不放松对自己的要求。 A.爱岗敬业 B.精益求精(正确答案) C.勤奋刻苦 D.专…...

Singularity容器安装与使用

Singularity容器技术 docker的缺点: 资源限制问题:Slurm利用cgroups实现资源分配&#xff0c;Docker通过ocker daemon无法实现。 权限问题:Docker daemon使用 root用户启动&#xff0c;HPC场录期望使用普通用户运行容器。 singuiarily主要是适合HPC中的普通用户&#xff0c;…...

Linux 文件、重定向、缓冲区

个人主页&#xff1a;仍有未知等待探索-CSDN博客 专题分栏&#xff1a; Linux 目录 一、文件 1、文件的理解&#xff08;浅层&#xff09; 1.文件是什么&#xff1f; 2.文件操作的前提 3.文件的存储 4.一个进程可以打开多个文件吗&#xff1f;如果可以怎么管理的&#xf…...

WEB漏洞-SQL注入之MYSQL注入

跨库注入的原理&#xff1a;针对同一IP下的不同域名 同一服务器下 网站A对应数据库A 网站B对应数据库B 网站C对应数据库C 如果某网站的存在注入点&#xff0c;注入点的权限恰好是root权限&#xff0c;也就是最高权限&#xff0c;那么可以通过跨库注入获取其他网站的数据库…...

mysql 查询 from a, b 和 a left join b 有什么区别

在MySQL中&#xff0c;from a, b 和 a left join b 有显著的区别&#xff0c;主要体现在查询结果和使用场景上。 基本语法与返回结果&#xff1a; from a, b&#xff1a;这种写法实际上是将两个表作为一个整体来处理&#xff0c;即假设这两个表是同一个表。因此&#xff0c;它…...

禁用ssh 22端口

在Linux系统中&#xff0c;要关闭SSH端口&#xff0c;可以通过修改SSH配置文件或防火墙规则来实现。 方法一&#xff1a;修改SSH配置文件 1. 使用root用户登录Linux系统。 2. 打开SSH配置文件&#xff0c;可以使用任何文本编辑器&#xff0c;如vi或nano。在大多数Linux发行版上…...

C++基础编程的学习3

nullptr关键字 在C11之前&#xff0c;空指针通常用NULL或0表示。然而&#xff0c;这些表示方法存在类型安全问题。C11引入了nullptr关键字&#xff0c;它提供了一个明确的、类型安全的空指针值。 Lambda表达式 Lambda表达式是C11引入的一种便捷的匿名函数定义方式。当Lambda…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...