从零安装pytorch并在pycharm中使用
背景介绍
目前主流使用的工具有Facebook搞的pythorch
和谷歌开发的tensorflow
两种,二者在实现理念上有一定区别,pytorch
和人的思维模式与变成习惯更像,而tensorflow
则是先构建整体结构,然后整体运行,开发调试过程较为繁琐,但好处是复用部署较方便,本质是其二者分别使用动态、静态图的区别。
安装Anaconda
Anaconda是python的包管理工具,并且允许创造多个虚拟环境,用以分别安装不同的python版本及包,相当于是python环境的虚拟机。
官网下载地址在此
下载后按照推荐步骤安装即可
第二个选项是将anaconda本身的python环境等信息添加到系统变量中,不推荐是怕引发环境变量错误,所以我们需要分别手动添加安装目录anaconda
,安装目录下的\Scripts
和Library\bin
目录添加到系统变量中:
安装完成后,可在系统中搜索Anaconda,或Jupyter Notebook,可找到如下文件:
以后仅使用Jupyter Notebook和Anaconda Prompt,将其发送到桌面即可,此时打开Prompt
即可进入anaconda的虚拟环境,示例如图:
常用命令如下:
清屏 cls
列出所有环境 conda env list
列出所有库 conda list
创建环境 conda create -n 环境名 python=版本号
删除环境 conda remove -n 环境名 --all
进入环境 conda activate 环境名
退出当前环境 conda deactivate
创建环境时会自动安装需要的组件和库,下载即可,此时再列出环境可见如下所示:
安装CUDA
随着神经网络等人工智能算法和大数据技术的发展,计算量越来越大,仅靠cpu的处理已经不能满足训练需要,我们使用中多通过专门负责图像处理的显卡来加速训练过程,所以在pytorch
的安装中我们需要使用显卡加速功能——cuda,加速显卡和cpu并行计算功能的平台,该技术目前仅支持英伟达显卡。
首先在cmd命令中输入nvidia-smi
查看显卡驱动API的CUDA版本:
cuda下载网站
该显卡CUDA版本为12.2,下载的新cuda平台不应高于该版本,故下载如下版本:
安装时仅选择CUDA即可:
安装完成后可通过nvcc -V
命令查看cuda版本:
安装pytorch
pytorch的本质是三个库,torch
、torchvision
和torchaudio
,torch
最大有1G左右,另外两个只是补充的附件,所以工程中我们一般只import torch
即可。
直接到其官方网站寻找下载资源,根据需要的版本生成指令,
然后到conda prompt虚拟环境中输入该指令即可直接下载,网络情况较好可直接使用,否则可使用镜像源,或到命令中的url手动下载,再使用pip
命令手动安装。
安装完成后输入conda list
查看所有库,出现如下图说明安装成功
在环境中打开python,查看能否导入,示例如下则说明安装成功:
报错解决——fbgemm.dll
这里我重新创建了新的名为pytorch
,python版本为3.9的环境,因为之前尝试了3.12和3.11的均在导入时报错缺少fbgemm.dll" or one of its dependencies.
,在目录下是有这个文件的,用dll组件查看发现依赖缺少很多文件,不是能一个个找到再添加的了,也有说法是电脑缺少C++的运行环境,但在本机中查看是装了的,卸载重装也没用,最后想到是不是可能版本不对应,分别尝试了不同的pytroch版本和CUDA版本,最后试了环境本身的python版本降到3.9才成功,可官网明明白白写着支持3.12,具体咋回事就不明白了,暂时有的用就是好的。
连接pycharm
直接上图
如图可见在pycharm中可用pytorch,并可以使用cuda加速。
总结
pytorch安装主要分三步,
1,包管理工具Anaconda用于管理组件,创造虚拟环境;
2,安装加速平台CUDA,主要涉及显卡cuda版本和安装cuda平台版本的关系;
3,安装pytorch,要与安装CUDA对应。
其中CUDA要注意版本向下兼容,顺序分别为显卡驱动API的CUDA版本—安装cuda平台的运行API版本—pytorch版本,版本可依次递减,但后不可大于前。
而pytorch除了要与CUDA对应外,还需注意与Anaconda的python版本对应,当然一般用旧的没什么问题,可那还怎么进步呢,只追求稳定,人类现在可能还用石头火把呢。
安装环境难的就在不同组件之间的配合,版本低了高了,语言和选项等选不对造成安装出错,如果要改就很麻烦,本人在配置过程也折腾了很长时间,就因为不想按教程装老版本,又没有提前搞清楚各个组之间的对应关系,导致不必要的时间浪费在改错上,还不如从头开始了,任务真正开始之前的准备工作还是做充分。
相关文章:

从零安装pytorch并在pycharm中使用
背景介绍 目前主流使用的工具有Facebook搞的pythorch和谷歌开发的tensorflow两种,二者在实现理念上有一定区别,pytorch和人的思维模式与变成习惯更像,而tensorflow则是先构建整体结构,然后整体运行,开发调试过程较为繁…...

开源AI工具FastGPT和RagFlow对比
FastGPT和RagFlow都是基于大型语言模型(LLM)的先进AI系统,它们在多个方面有着各自的特点和优势。 以下是对两者性能的详细对比: 一、系统架构与功能 FastGPT: 数据收集:通过从互联网上收集大量的文本数…...
第N2周:NLP中的数据集构建
对于初学者,NLP中最烦人的问题之一就数据集的构建问题,处理不好就会引起shape问题(各种由于shape错乱导致的问题)。这里给出一个模版,大家可根据这个模版来构建。 torch.utils.data是PyTorch中用于数据加载和预处理的…...

AI助力浮雕创作!万物皆可浮雕?Stable Diffusion AI绘画【浮雕艺术】之文生浮雕!
前言 对于浮雕艺术,其实并不了解。但有幸能和“细辛”前辈结识,对浮雕有了简单的了解,浮雕图案的传统方式是先由画师画出图,然后由雕刻师雕刻。画师画图归为浮雕的设计阶段,画师会绘制出浮雕的设计图,这为…...

你觉得大模型时代该出现什么?
大模型的概念都火了两年了,之前各种媒体吹嘘大模型的出现是类似“蒸汽机时代”、“iPhone时刻”等等。那为什么我们期待的结果都没出现呢?咱们先一起回顾下历史。 1、蒸汽机时代 1.1、蒸汽机历史 许多人都在讨论大模型时代好像只是概念在火࿰…...
JS【详解】事件委托
事件委托的简介 事件委托(Event Delegation)是 JS 处理事件的一种技术:不直接在目标元素上设置事件监听器,而是在其父元素或祖先元素上设置监听器,然后利用事件冒泡机制来捕获和处理事件。 事件委托的好处 减少内存占用…...

谈对象系列:C++类和对象
文章目录 一、类的定义1.1类定义的格式类的两种定义方法结构体: 1.2访问限定符1.3类域 二、实例化2.1变量的声明和定义2.2类的大小计算空类的大小(面试): 三、this指针小考题 一、类的定义 1.1类定义的格式 使用class关键字&…...

设计模式20-备忘录模式
设计模式20-备忘录 动机定义与结构定义结构 C代码推导优缺点应用场景总结备忘录模式和序列化备忘录模式1. **动机**2. **实现方式**3. **应用场景**4. **优点**5. **缺点** 序列化1. **动机**2. **实现方式**3. **应用场景**4. **优点**5. **缺点** 对比总结 动机 在软件构建过…...

绘制echarts-liquidfill水球图
文章目录 一、效果图二、步骤1.安装插件2.引入2.主要代码2.素材图片 总结 一、效果图 二、步骤 1.安装插件 npm install echarts npm install echarts-liquidfillecharts5的版本与echarts-liquidfill3兼容,echarts4的版本与echarts-liquidfill2兼容,安装的时候需要…...

应急响应:D盾的简单使用.
什么是应急响应. 一个组织为了 应对 各种网络安全 意外事件 的发生 所做的准备 以及在 事件发生后 所采取的措施 。说白了就是别人攻击你了,你怎么把这个攻击还原,看看别人是怎么攻击的,然后你如何去处理,这就是应急响应。 D盾功…...

c语言第14天笔记
通过指针引用数组 数组元素的指针 数组指针:数组中的第一个元素的地址,也就是数组的首地址。 指针数组:用来存放数组元素地址的数组,称之为指针数组。 注意:虽然我们定义了一个指针变量接收了数组地址,但…...

服装行业QMS中的来料检验:常见问题解析与解决策略
在服装行业的来料检验过程中,常会遇到一系列问题,这些问题可能影响到原材料的质量,进而影响最终产品的品质。以下将详细介绍来料检验的常见问题及相应的解决方法: 一、常见问题 外观瑕疵 问题描述:原材料表面存在污渍…...

健身动作AI识别,仰卧起坐计数(含UI界面)
用Python和Mediapipe打造,让你的运动效果一目了然! 【技术揭秘】 利用Mediapipe的人体姿态估计,实时捕捉关键点,精确识别动作。 每一帧的关键点坐标和角度都被详细记录,为动作分析提供数据支持。 支持自定义动作训练&a…...

GitHub开源金融系统:Actual
Actual:电子金融,本地优先,自由开源- 精选真开源,释放新价值。 概览 Actual的创新之处在于其对个人财务管理的全面考虑,它不仅仅是一个简单的记账工具,而是一个综合性的理财解决方案。它的本地优先设计意味…...

【学习笔记】Day 7
一、进度概述 1、DL-FWI基础入门培训笔记 2、inversionnet_train 试运行——未成功 二、详情 1、InversionNet: 深度学习实现的反演 InversionNet构建了一个具有编码器-解码器结构的卷积神经网络,以模拟地震数据与地下速度结构的对应关系。 (一…...
网络中特殊的 IP 地址
特殊网络 IP 127.0.0.1 127.0.0.1 是本机回送地址,发送到 127.0.0.1 的数据或者从 127.0.0.1 返回的数据只会在本机进行传输, 而不进行外部网络传输。 主要有以下两个作用: 测试本机网络 当我们可以 ping 通 127.0.0.1 的时候, 则说明本机的网卡以及 tc…...
ASP 表单处理入门指南
ASP 表单处理入门指南 简介 ASP(Active Server Pages)是一种由微软开发的服务器端脚本环境,用于动态生成交互性网页。它允许开发者结合HTML、VBScript或JScript脚本语言来创建和运行动态网页或Web应用程序。本文将重点介绍如何使用ASP来处理表单数据,包括表单的创建、数据…...

极米RS10Plus性价比高吗?7款4-6K价位投影仪测评哪款最好
通常家庭想买个投影仪都会选择4-6K这个价位段的投影仪,3K以下的投影配置太低,6K以上的价格略高,4-6K价位段的中高端投影仪正好满足大部分家庭的使用需求。正好极米投影在8月份上新了一款Plus版本的长焦投影:极米RS10Plusÿ…...
RocketMQ怎么对文件进行读写的?
RocketMQ 对文件的读写主要依赖于其底层的存储机制,核心组件是 CommitLog 和 ConsumeQueue,并且通过 MappedFile 类来进行高效的文件操作。以下是 RocketMQ 文件读写的详细介绍: 1. CommitLog CommitLog 是 RocketMQ 的核心存储文件&#x…...
智慧宠物护理:智能听诊器引领健康监测新潮流
在宠物健康科技的浪潮中,智能听诊器的诞生标志着宠物健康管理迈向了智能化的新纪元。广州坎普利智能信息科技有限公司的创新产品,正为宠物主人和他们的毛茸茸伙伴带来前所未有的关怀体验。 创新特点 这款智能听诊器,以其前沿科技和人性化设…...

K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...