当前位置: 首页 > news >正文

Python pandas常见函数

Pandas库

      • 基本概念
      • 读取数据
      • 数据处理
      • 数据输出
      • 其他常用功能

pip install pandas

基本概念

  1. 数据结构

    • Series: 一维数据结构

      import pandas as pd
      data = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd'])
      print(data)
      
    • DataFrame: 二维数据结构

      data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35]
      }
      df = pd.DataFrame(data)
      print(df)
      

读取数据

  1. 从 CSV 文件读取数据

    df = pd.read_csv('file.csv')
    print(df.head())
    
  2. 从 Excel 文件读取数据

    df = pd.read_excel('file.xlsx', sheet_name='Sheet1')
    print(df.head())
    
  3. 从 SQL 查询读取数据

    import sqlite3
    conn = sqlite3.connect('database.db')
    df = pd.read_sql_query('SELECT * FROM table', conn)
    print(df.head())
    

数据处理

  1. 查看数据

    • 查看前 5 行

      print(df.head())
      
    • 查看后 5 行

      print(df.tail())
      
    • 查看数据的简要信息

      print(df.info())
      
    • 查看数据的统计摘要

      print(df.describe())
      
  2. 选择和过滤数据

    • 按列选择

      print(df['Name'])
      
    • 按行选择

      print(df.loc[0])  # 按标签
      print(df.iloc[0])  # 按位置
      
    • 条件过滤

      filtered_df = df[df['Age'] > 30]
      print(filtered_df)
      
  3. 数据清洗

    • 处理缺失值

      df = df.dropna()  # 删除含缺失值的行
      df = df.fillna(0)  # 将缺失值填充为 0
      
    • 去重

      df = df.drop_duplicates()
      
    • 数据类型转换

      df['Age'] = df['Age'].astype(float)
      
  4. 数据操作

    • 添加列

      df['Country'] = 'USA'
      
    • 删除列

      df = df.drop('Country', axis=1)
      
    • 重命名列

      df = df.rename(columns={'Name': 'Full Name'})
      
  5. 数据聚合

    • 按组聚合

      grouped_df = df.groupby('Country').agg({'Age': 'mean'})
      print(grouped_df)
      
    • 合并数据

      df1 = pd.DataFrame({'ID': [1, 2], 'Value': ['A', 'B']})
      df2 = pd.DataFrame({'ID': [1, 2], 'Score': [85, 90]})
      merged_df = pd.merge(df1, df2, on='ID')
      print(merged_df)
      
    • 拼接数据

      df1 = pd.DataFrame({'Name': ['Alice', 'Bob']})
      df2 = pd.DataFrame({'Name': ['Charlie', 'David']})
      concatenated_df = pd.concat([df1, df2], ignore_index=True)
      print(concatenated_df)
      
  6. 数据排序

    • 按列排序

      sorted_df = df.sort_values(by='Age')
      print(sorted_df)
      
    • 排序方向

      sorted_df = df.sort_values(by='Age', ascending=False)
      print(sorted_df)
      

数据输出

  1. 保存为 CSV 文件

    df.to_csv('output.csv', index=False)
    
  2. 保存为 Excel 文件

    df.to_excel('output.xlsx', index=False)
    

其他常用功能

  1. 透视表

    pivot_table = pd.pivot_table(df, values='Age', index='Country', aggfunc='mean')
    print(pivot_table)
    
  2. 时间序列

    • 日期时间转换

      df['Date'] = pd.to_datetime(df['Date'])
      
    • 设置时间索引

      df = df.set_index('Date')
      

相关文章:

Python pandas常见函数

Pandas库 基本概念读取数据数据处理数据输出其他常用功能 pip install pandas基本概念 数据结构 Series: 一维数据结构 import pandas as pd data pd.Series([10, 20, 30, 40], index[a, b, c, d]) print(data)DataFrame: 二维数据结构 data {Name: [Alice, Bob, Charlie],Ag…...

行业落地分享:阿里云搜索RAG应用实践

最近这一两周看到不少互联网公司都已经开始秋招提前批了。 不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。 最近,我们又陆续整理了很多大厂的面试题,帮助一些球友…...

【SQL】温度比较

目录 题目 分析 代码 题目 表: Weather ------------------------ | Column Name | Type | ------------------------ | id | int | | recordDate | date | | temperature | int | ------------------------ id 是该表具有唯…...

Istio 项目会往用户的 Pod 里注入 Envoy 容器,用来代理 Pod 的进出流量,这是什么设计模式?

Istio 项目会往用户的 Pod 里注入 Envoy 容器,用来代理 Pod 的进出流量,这是什么设计模式? A. 装饰器 B. sidecar C. 工厂模式 D. 单例 选择B ‌Sidecar模式是一种设计模式,它将应用程序的一部分功能作为单独的进程实现&#xff…...

(24)(24.1) FPV和仿真的机载OSD(三)

文章目录 前言 5 呼号面板 6 用户可编程警告 7 使用SITL测试OSD 8 OSD面板列表 前言 此面板允许在机载 OSD 屏幕上显示业余无线电呼号(或任何其他单个字符串)。它将从 SD 卡根目录下名为“callsign.txt”的文件中读取字符串。 5 呼号面板 此面板允…...

测试开发岗面试总结

某基金管理公司线下测试开发面试题总结。 测开题目如下 可以尝试自己先写,写完之后再去看参考解法哦 ~ 1、编写一段代码,把 list 的数平方(语言不限) ListA [1, 3, 5, 7, 9, 11] 2、使用 Python 语言编写一个日志装饰器 3、进程、线程、协程有什么…...

编程-设计模式 7:桥接模式

设计模式 7:桥接模式 定义与目的 定义:桥接模式将抽象部分与它的实现部分分离,使得它们都可以独立地变化。目的:该模式的主要目的是解耦一个类的抽象部分与其实现部分,使得这两部分可以独立地发展和变化。 实现示例…...

C语言----结构体

结构体 结构体的含义 自定义的数据类型 它是由很多的数据组合成的一个整体,结构型数据 其中的每一个数据,都是结构体的成员 书写的位置: 函数的里面:局部位置,只能再本函数中使用 函数的外面:全局位置,在所有的函数中都可以…...

基于HKELM混合核极限学习机多输出回归预测 (多输入多输出) Matlab代码

基于HKELM混合核极限学习机多输出回归预测(多输入多输出)Matlab代码 每个输出都有以下线性拟合图等四张图!!!具体看图,独家图像!!! 程序已经调试好,替换数据集根据输出个数修改out…...

经纬恒润荣获小米汽车优秀质量奖!

小米SU7上市已超百天,在品质经过客户严选的同时,产量与交付量屡创新高,6-7月连续两个月交付量均超过10000台。为奖励对小米汽车质量和交付做出卓越贡献的合作伙伴团队及个人,小米向质量表现突出的供应商授予了优秀质量奖。经纬恒润…...

Linux 软件编程学习第十一天

1.管道: 进程间通信最简单的形式 2.信号: 内核层和用户层通信的一种方式 1.信号类型: 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 1…...

hive udtf 函数:输入一个字符串,将这个字符串按照特殊的逻辑处理之后,输出4个字段

这里要继承GenericUDTF 这个抽象类,直接上代码: package com.xxx.hive.udf; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.hive.ql.exec.Description; import org.apache.hadoop.hive.ql.exec.UDFArgumentException; import …...

【实现100个unity特效之16】unity2022之前或者之后版本实现全屏shader graph的不同方式 —— 适用于人物受伤红屏或者一些其他状态效果

最终效果 文章目录 最终效果前言unity2022版本 Fullscreen shader graph首先,请注意你的Inity版本,是不是2022.2以上,并且项目是URP项且基本配置 修改shader graph边缘效果动起来优化科幻风制作一些变量最终效果最终节点图代码控制 2022之前版…...

比特币使用ord蚀刻符文---简单笔记

说明 毕竟符文热度过了,今年四月份做的笔记分享出来 蚀刻符文需要先同步完区块数据,和index文件,不然蚀刻会失败,在testnet和signet网络也一样。 创建钱包(会输出助记词): ord --bitcoin-da…...

大数据-74 Kafka 高级特性 稳定性 - 控制器、可靠性 副本复制、失效副本、副本滞后 多图一篇详解

点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...

c# 什么是扩展方法

官方解释 扩展方法使你能够向现有类型“添加”方法,而无需创建新的派生类型、重新编译或以其他方式修改原始类型。 扩展方法是一种静态方法,但可以像扩展类型上的实例方法一样进行调用。 对于用 C#、F# 和 Visual Basic 编写的客户端代码&#x…...

全屏组件封装(react18+antd)

基于reactts封装的公用全屏组件 1、封装组件 在components下面构建FullScreenButton文件: FullScreenButton/index.tsx import React, { useState, useCallback, useEffect } from "react"; import { FullscreenOutlined, FullscreenExitOutlined } fr…...

wordpress全局自适应网址导航整站打包源码,含主题和数据库

wordpress全局自适应网址导航整站打包源码,含主题和数据库。直接恢复就可以使用了。 这个是自适应的布局设计,体验还不错。用网址导航是可以的。 代码免费下载:百度网盘...

PyTorch深度学习框架

最近放假在超星总部河北燕郊园区实习,本来是搞前后端开发岗位的,然后带我的副总老大哥比较关照我,了解我的情况后得知我大三选的方向是大数据,于是建议我学学python、Hadoop,Hadoop我看了一下内容比较多,而…...

Python和AI库NumPy(二):数组创建与操作

目录 1. 数组创建 1.1 基本数组创建 1.2 使用内置函数创建数组 1.3 特殊数组的创建 2. 数组的基本操作 2.1 数组属性 2.2 数组索引和切片 2.3 数组的形状操作 2.4 数组拼接与分割 3. 数组的数学操作 3.1 基本算术操作 3.2 广播机制 3.3 线性代数运算 4. 高级数组…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...