当前位置: 首页 > news >正文

Golang 并发编程

Golang 并发编程

Goroutine

什么是协程

创建 Goroutine

主 goroutine (main函数)退出后,其它的工作 goroutine 也会自动退出

package mainimport ("fmt""time"
)func myFunc() {i := 0for {i++fmt.Println("func: ", i)time.Sleep(1 * time.Second)}
}func main() {go myFunc()i := 0for {i++fmt.Println("main: ", i)time.Sleep(1 * time.Second)}
}
main:  1
func:  1
func:  2
main:  2

Goexit 函数

调用 runtime.Goexit() 将立即终止当前 goroutine 执⾏

func myFunc() {i := 0for {i++fmt.Println("func: ", i)time.Sleep(1 * time.Second)if i == 10 {fmt.Println("func OVER ~")runtime.Goexit()}}
}func main() {go myFunc()i := 0for {i++fmt.Println("main: ", i)time.Sleep(1 * time.Second)}
}
...
func:  9
main:  9
main:  10
func:  10
func OVER ~
main:  11
main:  12
...

匿名函数

func main() {func() {fmt.Println("hello, I don't have name.")}()
}
func main() {fun := func() {fmt.Println("hello, I don't have name.")}fun()
}

Channel

什么是 Channel

channel 用来解决go程的同步问题以及go程之间数据共享(数据传递)的问题。

⽤类型 channel可用于多个 goroutine 通讯。其内部实现了同步,确保并发安全。

创建管道

package mainimport ("fmt""time"
)var c chan intfunc f(name string) {for {i := <-cfmt.Println(name, ": ", i)i++c <- itime.Sleep(1 * time.Second)}
}func main() {c = make(chan int)go f("fun1")go f("fun2")c <- 0for {}
}
fun2 :  0
fun1 :  1
fun2 :  2
fun1 :  3
fun2 :  4
fun1 :  5
fun2 :  6

Channel 的缓冲

无缓冲:通道不保存数据,生产者会等待消费者,将数据放到管道中。

有缓存:类似消息队列,可以保存在管道中。

package mainimport ("fmt""time"
)var c chan intfunc f(name string) {for {i := <-cfmt.Println(name, ": ", i)i++c <- itime.Sleep(10 * time.Millisecond)}
}func main() {// 有缓冲的 Channelc = make(chan int, 1)go f("fun1")go f("fun2")c <- 0time.Sleep(1 * time.Second)
}

会产生同一个 go 程会执行多次的效果

image-20240809153821768
func main() {// 无缓冲的 Channelc = make(chan int)go f("fun1")go f("fun2")c <- 0time.Sleep(1 * time.Second)
}

两个 go 程交替运行,channel 作为锁,相互阻塞线程。

image-20240809153902951

关闭 channel

package mainimport ("fmt"
)func main() {c := make(chan int)go func() {for i := 0; i < 5; i++ {c <- i}close(c)}()for {// ok为true说明channel没有关闭,为false说明管道已经关闭if data, ok := <-c; ok {fmt.Println(data)} else {break}}fmt.Println("Finished")
}

range 函数

可以用 range 迭代操作 channel

package mainimport ("fmt"
)func main() {c := make(chan int)go func() {for i := 0; i < 5; i++ {c <- i}close(c)}()for data := range c {fmt.Println(data)}fmt.Println("Finished")
}

select 函数

用于多路监控 channel

package mainimport ("fmt"
)func fibonacci(c, quit chan int) {x, y := 1, 1for {select {case c <- x:x, y = y, x+ycase <-quit:fmt.Println("quit")return}}
}func main() {c := make(chan int)quit := make(chan int)go func() {for i := 0; i < 6; i++ {fmt.Println(<-c)}quit <- 0}()fibonacci(c, quit)
}

Go Modules

配置

go env -w GO111MODULE=on
go env -w GOPROXY=https://goproxy.cn,direct

创建项目

go mod init github.com/wmh1024/demo_module
go get xxxx

replace

修改模块的版本依赖关系

go mod edit -replace=zinx@v0.0.0-20200306023939-bc416543ae24=zinx@v0.0.0-20200221135252-8a8954e75100

相关文章:

Golang 并发编程

Golang 并发编程 Goroutine 什么是协程 创建 Goroutine 主 goroutine &#xff08;main函数&#xff09;退出后&#xff0c;其它的工作 goroutine 也会自动退出 package mainimport ("fmt""time" )func myFunc() {i : 0for {ifmt.Println("func: …...

【数据结构详解】——选择排序(动图详解)

目录 &#x1f552; 1. 直接选择排序&#x1f552; 2. 堆排序 &#x1f552; 1. 直接选择排序 &#x1f4a1; 算法思想&#xff1a;第一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始&#xff08;末尾&#xff09;位置…...

杂项命令(笔记)

ifconfig &#xff1a;http://t.csdnimg.cn/gT2AR echo :http://t.csdnimg.cn/6DSoO ps和top的区别 http://t.csdnimg.cn/f1XWt...

代码随想录算法训练营Day38||完全背包问题、leetcode 518. 零钱兑换 II 、 377. 组合总和 Ⅳ 、70. 爬楼梯 (进阶)

一、完全背包问题 相较于01背包&#xff0c;完全背包的显著特征是每个物品可以用无数次&#xff0c;遍历顺序也不需要为了保证每个物品只去一次而倒序遍历。 #include<iostream> #include<vector> using namespace std; int main(){int N,V;cin>>N>>V…...

超越链端:Web3的无边界技术革命

Web3&#xff0c;作为互联网技术的第三代变革&#xff0c;正以其去中心化、开放透明的特性&#xff0c;重新定义着我们的数字生活。在这一背景下&#xff0c;“链端”概念逐渐成为热点&#xff0c;意味着我们不仅仅局限于区块链技术本身&#xff0c;而是探索其在更广泛领域的应…...

127. Go反射基本原理

文章目录 反射基础 - go 的 interface 是怎么存储的&#xff1f;iface 和 eface 的结构体定义&#xff08;runtime/iface.go&#xff09;&#xff1a;_type 是什么&#xff1f;itab 是什么&#xff1f; 反射对象 - reflect.Type 和 reflect.Value反射三大定律Elem 方法reflect.…...

提高PDF电子书的分辨率

解决方法出处 1. 安装ImageMagick brew install imagemagick brew install ghostscript2. 按流程进行 convert -density 600 your_pdf_filename.pdf output-%02d.jpg convert output*.jpg -normalize -threshold 80% final-%02d.jpg convert final*.jpg my_new_highcontras…...

Spring Cloud全解析:注册中心之zookeeper注册中心

zookeeper注册中心 使用zookeeper作为注册中心就不需要像eureka一样&#xff0c;在写一个eureka-server的服务了&#xff0c;因为zookeeper本身就是一个服务端&#xff0c;只需要编写需要进行服务注册的客户端即可 依赖 <!-- zookeeper 注册中心 --> <dependency&g…...

解决戴尔台式电脑休眠后无法唤醒问题

近期发现有少量戴尔的台式机会有休眠后无法唤醒的问题&#xff0c;具体现象就是电脑在休眠后&#xff0c;电源指示灯以呼吸的频率闪烁&#xff0c;无论怎么点鼠标和键盘都没有反应&#xff0c;并且按开机按钮也没法唤醒&#xff0c;只能是长按开机键强制关机再重启才行&#xf…...

MySQL运维-分库分表

介绍 问题分析 拆分策略 垂直拆分 水平拆分 实现技术 Mycat概述 介绍 概念介绍 Mycat配置 schema.xml schema标签 schema标签&#xff08;table&#xff09; datanode标签 datahost标签 rule.xml sever.xml system标签 user标签 Mycat分片 分片规则-范围 分片规则-取模 分…...

AGX orin硬件设计

AGX orin简介 ​ 从硬件组成来说&#xff0c;AGX orin可以分为核心板和扩展板。 核心板 ​ 核心板就是英伟达原装板卡&#xff0c;如下图所示&#xff1a; ​ 核心板分为32G内存版本和64内存版本&#xff0c;两个版本除去内存不同之外&#xff0c;CPU也略有差异。核心板通过…...

AI大模型开发——2.深度学习基础(1)

学习大模型开发之前&#xff0c;我们需要有足够的储备知识&#xff0c;类似于基础的python语法相信大家也都是十分熟悉了。所以笔者也是考虑了几天决定先给大家补充一些深度学习知识。 首先问大家一个问题&#xff0c;学习大模型之前为什么要先学习深度学习知识呢&#xff1f; …...

go语言day22 gin-vue-admin全栈项目的依赖安装

flipped-aurora/gin-vue-admin: &#x1f680;ViteVue3Gin的开发基础平台&#xff0c;支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能…...

PHP之docker学习笔记

Docker学习笔记 前言&#xff1a; 之前学过一遍忘了 那就再来一遍没啥好说的就是可以直接构建一个环境 然后方便部署官网 http://www.docker.com仓库 https://hub.docker.comDocker的基本组成 镜像 容器 仓库 安装与卸载 卸载 sudo yum remove docker \docker-client \dock…...

基于树莓派4B与STM32的UART串口通信实验(代码开源)

在现代嵌入式系统中&#xff0c;树莓派和STM32的结合使用已成为一种流行趋势&#xff0c;它们各自承担不同的角色&#xff0c;实现优势互补。树莓派以其强大的计算能力处理复杂算法&#xff0c;而STM32则以其高效的控制能力执行实际的硬件操作。本文将详细介绍如何实现基于树莓…...

【云服务器系列】基于华为云OBS实现Picgo和Typora的完美融合

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

IIC协议

一、IIC协议 1.1 IIC协议概述 IIC全称Inter-Integrated Circuit (集成电路总线) 是由PHILIPS(飞利浦)公司在80年代开发的两线式串行总线&#xff0c;用于连接微控制器及其外围设备。IIC属于半双工同步通信方式 特点 简单性和有效性。 由于接口直接在组件之上&#xff0c;…...

如何在linux系统上部署nginx

1&#xff09;首先去 nginx.org/download 官网下载你所需要的版本 我这里是下载的 nginx-1-23-3.tar.gz 2&#xff09;然后执行 yum -y install lrzsz 安装文件上传软件 执行 rz 选择你下载nginx的位置进行上传 yum -y install lrzsz 3&#xff09;执行 tar -zxvf nginx-1.23…...

香港网站服务器抵御恶意攻击的一些措施

香港网站服务器因为在互联网中扮演着重要的角色&#xff0c;因此也在面临着网络中各种恶意攻击的威胁&#xff0c;为了确保香港网站服务器的安全和稳定运行&#xff0c;可以通过安全措施来进行防御&#xff0c;本文就来分享一些香港网站服务器来抵御恶意攻击的关键措施。 一、网…...

实战:docker部署filesite.io完美解决家庭相册需求-2024.8.10(测试成功)

https://wiki.onedayxyy.cn/docs/filesite.io-photot-install-full...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...