【数学分析笔记】第1章第1节:集合(2)
这节我自己补了一些内容,要不然听不太懂陈纪修老师讲的
1. 集合与映射
1.3 子集与真子集
- 假如有 S \textbf{S} S和 T \textbf{T} T两个集合,其中, S \textbf{S} S的所有元素都属于 T \textbf{T} T,则称 S \textbf{S} S是 T \textbf{T} T的子集,记为 S ⊂ T \textbf{S}\subset \textbf{T} S⊂T。
【例】 N + ⊂ Z ⊂ Q ⊂ R \textbf{N}^{+}\subset \textbf{Z}\subset \textbf{Q}\subset \textbf{R} N+⊂Z⊂Q⊂R
- S ⊂ T \textbf{S}\subset \textbf{T} S⊂T的表述: x ∈ S ⇒ x ∈ T x\in\textbf{S}\Rightarrow x\in\textbf{T} x∈S⇒x∈T,其中“ ⇒ \Rightarrow ⇒”表示蕴含关系。
- 设 p , q p,q p,q为两个命题,复合命题“如果 p p p,则 q q q”称为 p p p与 q q q的蕴含式,记作 p ⇒ q p\Rightarrow q p⇒q或 p → q p\to q p→q,并称 p p p是蕴含式的前件, q q q为蕴含式的后件, ⇒ \Rightarrow ⇒或 → \to →称为蕴含连接词,并规定 p ⇒ q p\Rightarrow q p⇒q为假当且仅当 p p p为真 q q q为假, p ⇒ q p\Rightarrow q p⇒q的逻辑关系是 q q q是 p p p的必要条件。
- 若 S \textbf{S} S中至少有一个元素不属于 T \textbf{T} T,则 S \textbf{S} S不是 T \textbf{T} T的子集,记为 S ⊄ T \textbf{S}\not\subset\textbf{T} S⊂T
- 若 S ⊂ T \textbf{S}\subset \textbf{T} S⊂T,在 T \textbf{T} T中存在一个元素不属于 S \textbf{S} S,则称 S \textbf{S} S为 T \textbf{T} T的真子集,记作 S ⫋ T \textbf{S}\varsubsetneqq\textbf{T} ST
- 对任意的集合 S \textbf{S} S有: S ⊂ S , ∅ ⊂ S \textbf{S}\subset\textbf{S},\emptyset\subset\textbf{S} S⊂S,∅⊂S
【证明】 ∅ ⊂ S \emptyset\subset\textbf{S} ∅⊂S,其中 S \textbf{S} S为任意的集合。
【证】设命题 q q q为“ ∅ ⊂ S \emptyset\subset\textbf{S} ∅⊂S”,假如有命题 p p p为“ x ∈ ∅ x\in\emptyset x∈∅则 x ∈ S x\in\textbf{S} x∈S”,先不论这个命题的真假,我们单纯从命题 p p p根据子集的定义能推出命题 q q q,即 p ⇒ q p\Rightarrow q p⇒q是真的,根据 p ⇒ q p\Rightarrow q p⇒q为假当且仅当 p p p为真 q q q为假,则逆否命题 p p p为假 q q q为真则 p ⇒ q p\Rightarrow q p⇒q为真成立,由于空集中没有任何元素,所以命题 p p p中 x ∈ ∅ x\in\emptyset x∈∅为假,即 p p p为假,且 p ⇒ q p\Rightarrow q p⇒q为真,则 q q q一定为真,即 ∅ ⊂ S \emptyset\subset\textbf{S} ∅⊂S为真。
【P.s】此段证明就是陈纪修老师视频课里一语带过的内容。
【例1.1.1】 T = { a , b , c } \textbf{T}=\{a,b,c\} T={a,b,c},求 T \textbf{T} T的子集。
【解】 T \textbf{T} T的子集为 ∅ , { a } , { b } , { c } , { a , b } , { b , c } , { a , c } , { a , b , c } \emptyset,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\},\{a,b,c\} ∅,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c},子集数量为 2 3 2^{3} 23个
其中,真子集有 ∅ , { a } , { b } , { c } , { a , b } , { b , c } , { a , c } \emptyset,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\} ∅,{a},{b},{c},{a,b},{b,c},{a,c},真子集个数为 2 3 − 1 2^{3}-1 23−1个。
1.4 集合相等
- 若 S \textbf{S} S与 T \textbf{T} T的所有元素完全相同,则称两个集合相同,记为 S = T \textbf{S}=\textbf{T} S=T
- “ ⇔ \Leftrightarrow ⇔”表示等价,相互蕴含,当且仅当。
- S = T ⇔ S ⊂ T 且 T ⊂ S \textbf{S}=\textbf{T}\Leftrightarrow \textbf{S}\subset\textbf{T}且\textbf{T}\subset\textbf{S} S=T⇔S⊂T且T⊂S
1.5 实数的子集
实数集合 R \textbf{R} R的子集常见的是区间,比如开区间 ( a , b ) = { x ∣ x ∈ R , 且 a < x < b } (a,b)=\{x|x\in \textbf{R},且a<x<b\} (a,b)={x∣x∈R,且a<x<b}。
【例】 ( a , + ∞ ) = { x ∣ x ∈ R , 且 a < x < + ∞ } (a,+\infty)=\{x|x\in \textbf{R},且a<x<+\infty\} (a,+∞)={x∣x∈R,且a<x<+∞}
[ a , b ] , [ a , b ) , ( a , b ] , [ a , + ∞ ) , ( − ∞ , b ] , ( − ∞ , + ∞ ) . . . [a,b],[a,b),(a,b],[a,+\infty),(-\infty,b],(-\infty,+\infty)... [a,b],[a,b),(a,b],[a,+∞),(−∞,b],(−∞,+∞)...这些区间是常见的实数集合的子集。
1.6 集合的运算
集合的运算主要有四种:并,交,差,补
1.6.1 集合的并与交
- S \textbf{S} S与 T \textbf{T} T的并:指 S \textbf{S} S与 T \textbf{T} T的元素的汇集而成的集合,记为 S ∪ T \textbf{S}\cup \textbf{T} S∪T,则 S ∪ T = { x ∣ x ∈ S 或 x ∈ T } \textbf{S}\cup \textbf{T}=\{x|x\in\textbf{S}或x\in\textbf{T}\} S∪T={x∣x∈S或x∈T},如下图所示:

- S \textbf{S} S与 T \textbf{T} T的交:指 S \textbf{S} S和 T \textbf{T} T的公共元素组成的集合。记作 S ∩ T \textbf{S}\cap \textbf{T} S∩T,即 S ∩ T = { x ∣ x ∈ S 且 x ∈ T } \textbf{S}\cap \textbf{T}=\{x|x\in\textbf{S}且x\in\textbf{T}\} S∩T={x∣x∈S且x∈T},如下图所示:

【例】 S = a , b , c , T = b , c , d , e \textbf{S}={a,b,c},\textbf{T}={b,c,d,e} S=a,b,c,T=b,c,d,e,则 S ∩ T = { b , c } \textbf{S}\cap\textbf{T}=\{b,c\} S∩T={b,c} - 并与交的运算满足交换律:
S ∪ T = T ∪ S \textbf{S}\cup\textbf{T}=\textbf{T}\cup\textbf{S} S∪T=T∪S
S ∩ T = T ∩ S \textbf{S}\cap\textbf{T}=\textbf{T}\cap\textbf{S} S∩T=T∩S - 并与交的运算满足结合律:
A ∪ ( B ∪ D ) = ( A ∪ B ) ∪ D \textbf{A}\cup(\textbf{B}\cup\textbf{D})=(\textbf{A}\cup\textbf{B})\cup\textbf{D} A∪(B∪D)=(A∪B)∪D
A ∩ ( B ∩ D ) = ( A ∩ B ) ∩ D \textbf{A}\cap(\textbf{B}\cap\textbf{D})=(\textbf{A}\cap\textbf{B})\cap\textbf{D} A∩(B∩D)=(A∩B)∩D - 并与交的运算满足分配律:
A ∩ ( B ∪ D ) = ( A ∩ B ) ∪ ( A ∩ D ) \textbf{A}\cap(\textbf{B}\cup\textbf{D})=(\textbf{A}\cap\textbf{B})\cup(\textbf{A}\cap\textbf{D}) A∩(B∪D)=(A∩B)∪(A∩D)
A ∪ ( B ∩ D ) = ( A ∪ B ) ∩ ( A ∪ D ) \textbf{A}\cup(\textbf{B}\cap\textbf{D})=(\textbf{A}\cup\textbf{B})\cap(\textbf{A}\cup\textbf{D}) A∪(B∩D)=(A∪B)∩(A∪D)
【证明】 A ∪ ( B ∩ D ) = ( A ∪ B ) ∩ ( A ∪ D ) \textbf{A}\cup(\textbf{B}\cap\textbf{D})=(\textbf{A}\cup\textbf{B})\cap(\textbf{A}\cup\textbf{D}) A∪(B∩D)=(A∪B)∩(A∪D)
【证】第一步:假设 x ∈ A ∪ ( B ∩ D ) x\in\textbf{A}\cup(\textbf{B}\cap\textbf{D}) x∈A∪(B∩D),要证 x ∈ ( A ∪ B ) ∩ ( A ∪ D ) x\in(\textbf{A}\cup\textbf{B})\cap(\textbf{A}\cup\textbf{D}) x∈(A∪B)∩(A∪D)
则 x ∈ A x\in\textbf{A} x∈A或者 x ∈ B 且 x ∈ D x\in\textbf{B}且x\in\textbf{D} x∈B且x∈D,
即 x ∈ A x\in\textbf{A} x∈A或者 x ∈ B x\in\textbf{B} x∈B,亦即 x ∈ ( A ∪ B ) x\in(\textbf{A}\cup\textbf{B}) x∈(A∪B)
同理 x ∈ ( A ∪ D ) x\in(\textbf{A}\cup\textbf{D}) x∈(A∪D)
所以 x ∈ ( A ∪ B ) x\in(\textbf{A}\cup\textbf{B}) x∈(A∪B)且 x ∈ ( A ∪ D ) x\in(\textbf{A}\cup\textbf{D}) x∈(A∪D)
即 x ∈ ( ( A ∪ B ) ∩ ( A ∪ D ) ) x\in((\textbf{A}\cup\textbf{B})\cap(\textbf{A}\cup\textbf{D})) x∈((A∪B)∩(A∪D))
又因为 x ∈ A ∪ ( B ∩ D ) x\in\textbf{A}\cup(\textbf{B}\cap\textbf{D}) x∈A∪(B∩D)
所以 ( A ∪ ( B ∩ D ) ) ⊂ ( ( A ∪ B ) ∩ ( A ∪ D ) ) (\textbf{A}\cup(\textbf{B}\cap\textbf{D}))\subset((\textbf{A}\cup\textbf{B})\cap(\textbf{A}\cup\textbf{D})) (A∪(B∩D))⊂((A∪B)∩(A∪D))
第二步:
设 x ∈ ( A ∪ B ) ∩ ( A ∪ D ) x\in(\textbf{A}\cup\textbf{B})\cap(\textbf{A}\cup\textbf{D}) x∈(A∪B)∩(A∪D),要证 x ∈ A ∪ ( B ∩ D ) x\in\textbf{A}\cup(\textbf{B}\cap\textbf{D}) x∈A∪(B∩D)
则 x ∈ ( A ∪ B ) x\in(\textbf{A}\cup\textbf{B}) x∈(A∪B)且 x ∈ ( A ∪ D ) x\in(\textbf{A}\cup\textbf{D}) x∈(A∪D)
若 x ∈ A x\in\textbf{A} x∈A,则 x ∈ ( A ∪ B ) x\in(\textbf{A}\cup\textbf{B}) x∈(A∪B)且 x ∈ ( A ∪ D ) x\in(\textbf{A}\cup\textbf{D}) x∈(A∪D)成立
若 x ∉ A x\notin\textbf{A} x∈/A,则 x ∈ B x\in\textbf{B} x∈B或 x ∈ D x\in\textbf{D} x∈D,此时 x ∈ ( A ∪ B ) x\in(\textbf{A}\cup\textbf{B}) x∈(A∪B)且 x ∈ ( A ∪ D ) x\in(\textbf{A}\cup\textbf{D}) x∈(A∪D)也成立
即 x ∈ A x\in\textbf{A} x∈A或 x ∈ ( B ∪ D ) x\in(\textbf{B}\cup\textbf{D}) x∈(B∪D)
亦即 x ∈ ( A ∪ ( B ∩ D ) ) x\in(\textbf{A}\cup(\textbf{B}\cap\textbf{D})) x∈(A∪(B∩D))
又因为 x ∈ ( A ∪ B ) ∩ ( A ∪ D ) x\in(\textbf{A}\cup\textbf{B})\cap(\textbf{A}\cup\textbf{D}) x∈(A∪B)∩(A∪D)
所以 ( A ∪ B ) ∩ ( A ∪ D ) ⊂ ( A ∪ ( B ∩ D ) ) (\textbf{A}\cup\textbf{B})\cap(\textbf{A}\cup\textbf{D})\subset(\textbf{A}\cup(\textbf{B}\cap\textbf{D})) (A∪B)∩(A∪D)⊂(A∪(B∩D))
【注】这里用到的是子集的定义: S ⊂ T \textbf{S}\subset \textbf{T} S⊂T的表述: x ∈ S ⇒ x ∈ T x\in\textbf{S}\Rightarrow x\in\textbf{T} x∈S⇒x∈T,其中“ ⇒ \Rightarrow ⇒”表示蕴含关系。
1.6.2 集合的差与补
-
S \textbf{S} S与 T \textbf{T} T的差:是指属于 S \textbf{S} S但不属于 T \textbf{T} T的集合,记为 S ∖ T \textbf{S}\setminus \textbf{T} S∖T或 S − T \textbf{S}- \textbf{T} S−T, S ∖ T { x ∣ x ∈ S 且 x ∉ T } \textbf{S}\setminus \textbf{T}\{x|x\in\textbf{S}且x\notin\textbf{T}\} S∖T{x∣x∈S且x∈/T},如下图所示:

【例】 { a , b , c } − { b , c , d , e } = { a } \{a,b,c\}-\{b,c,d,e\}=\{a\} {a,b,c}−{b,c,d,e}={a} -
一个集合的补:设在 X \textbf{X} X集合中讨论问题, S ⊂ X \textbf{S}\subset\textbf{X} S⊂X,则 S \textbf{S} S关于 X \textbf{X} X的补集 S X c { x ∣ x ∈ X 且 x ∉ S } = X ∖ S \textbf{S}_{\textbf{X}}^{c}\{x|x\in\textbf{X}且x\notin\textbf{S}\}=\textbf{X}\setminus\textbf{S} SXc{x∣x∈X且x∈/S}=X∖S,如果在不会产生混淆的前提下, X \textbf{X} X可以不写,比如, S = ( a , b ) \textbf{S}=(a,b) S=(a,b),则 S c \textbf{S}^{c} Sc可以理解为 S \textbf{S} S在实数集合 R \textbf{R} R上的补集,即 S c = ( − ∞ , a ] ∪ [ b , + ∞ ) \textbf{S}^{c}=(-\infty,a]\cup[b,+\infty) Sc=(−∞,a]∪[b,+∞)
【例】偶数集合关于整数集合的补集是奇数集合。
关于补集的结论:
- S ∪ S X c = X \textbf{S}\cup\textbf{S}_{\textbf{X}}^{c}=\textbf{X} S∪SXc=X
- S ∩ S X c = ∅ \textbf{S}\cap\textbf{S}_{\textbf{X}}^{c}=\emptyset S∩SXc=∅
- S ∖ T = S ∩ T S c \textbf{S}\setminus\textbf{T}=\textbf{S}\cap\textbf{T}_{\textbf{S}}^{c} S∖T=S∩TSc
1.6.3 对偶律(De Morgan公式)
( A ∪ B ) c = A c ∩ B c (\textbf{A}\cup\textbf{B})^{c}=\textbf{A}^{c}\cap\textbf{B}^{c} (A∪B)c=Ac∩Bc

( A ∩ B ) c = A c ∪ B c (\textbf{A}\cap\textbf{B})^{c}=\textbf{A}^{c}\cup\textbf{B}^{c} (A∩B)c=Ac∪Bc

相关文章:
【数学分析笔记】第1章第1节:集合(2)
这节我自己补了一些内容,要不然听不太懂陈纪修老师讲的 1. 集合与映射 1.3 子集与真子集 假如有 S \textbf{S} S和 T \textbf{T} T两个集合,其中, S \textbf{S} S的所有元素都属于 T \textbf{T} T,则称 S \textbf{S} S是 T \te…...
大话设计模式:七大设计原则
目录 一、单一职责原则(Single Responsibility Principle, SRP) 二、开放封闭原则(Open-Closed Principle, OCP) 三、依赖倒置原则(Dependency Inversion Principle, DIP) 四、里氏替换原则&am…...
利用多商家AI智能名片小程序提升消费者参与度与个性化体验:重塑零售行业的忠诚策略
摘要:在数字化浪潮席卷全球的今天,零售行业正经历着前所未有的变革。消费者对于购物体验的需求日益多样化、个性化,而零售商则面临着如何将一次性购物者转化为品牌忠诚者的巨大挑战。多商家AI智能名片小程序作为一种新兴的数字营销工具&#…...
Scala 闭包
Scala 闭包 Scala 闭包是一个非常重要的概念,它允许我们创建可以在稍后某个时间点执行的功能片段。闭包是一个函数,它捕获了封闭范围内的变量,即使在函数外部,这些变量也可以在函数内部使用。这使得闭包成为处理异步操作、回调和…...
前端JS总结(中)
目录 前言 正文 对象: 分类: 自定义对象: 内置对象: 重点: 常用内置对象: 字符串对象:String 获取字符串长度: 大小写转换: 获取某个字符: 截取字…...
elasticsearch的match_phrase匹配及其可能导致的查询问题
目录 1.match_phrase使用介绍 2.规避可能产生的查询问题 解决方式 一.查询和索引分词器一致,即都使用max_word或者都使用smart 二.使用slop增加匹配的容忍度 3.参考文档 1.match_phrase使用介绍 elasticsearch的match_phrase查询是全文查询,主要用…...
C++快速理解之继承
一、继承和派生 1.是什么? C 中的继承是类与类之间的关系,与现实世界中的继承类似 例如:儿子继承父亲的财产 继承(Inheritance)可以理解为一个类从另一个类获取成员变量和成员函数的过程 例如: 类B继承…...
Node.JS - 基础(Express)
目录 A. 简介 B. 下载,安装 C. 启动服务,查看文件结构 A. 简介 Express 是一个基于 Node.js 平台的极简、灵活的 Web 应用开发框架,它提供了一系列强大的功能来构建 Web 应用程序和 API。 一、Express 的基本特点 简洁的路由系统: Express 的路由系…...
I/O复用
I/O复用使得程序能够同时监听多个文件描述符,这对提高程序的性能至关重要。 举个例子: 就好比你天天玩手机,你妈为了监控你,在你房间安装了一个监控,这个监控可以实时监控你的一举一动,并上传到你妈手机上…...
【验证可用】解决安装SQL Server数据库时,报错“启用 windows 功能 NetFx3 时出错,错误代码:-2146498298......“的问题
目录 背景一. 报错信息1.1 报错的图片信息1.2 报错的文字信息 二. 解决报错2.1 下载 NetFx3.cab 文件2.2 执行命令 三. SQL Server 修复安装 背景 一次在阿里云服务器安装 SQL Server 2012时,系统报错了,导致安装进行不下去…通过在网上查找了多种解决方…...
STM32的SDIO接口详解
目录 1. 定义与兼容性 2. SDIO时钟 3. SDIO命令与响应 4. SDIO块数据传输 5. SDIO控制器的硬件结构 6.代码实现 1.SD初始化 2.测试SD卡的读取 3.测试SD卡的写入 STM32的SDIO(Secure Digital Input/Output,安全数字输入输出)接口是一…...
docker容器常用指令,dockerfile
docker:容器,主要是解决环境迁移的问题,将环境放入docker中,打包成镜像。 docker的基本组成:镜像(image),容器(container),仓库(repository)。镜像相当于类,容器相当于类的实例对象…...
C语言学习笔记 Day11(指针--下)
Day11 内容梳理: 目录 Chapter 7 指针 7.6 指针 & 函数 (1)形参改变实参的值 (2)字符数组作为函数参数 1)合并字符串 2)删掉字符串中空格 (3)指针作为函数返…...
(24)(24.2) Minim OSD快速安装指南(二)
文章目录 前言 6 MinimOSD-extra NG 7 替代硬件 前言 本文简要介绍了如何连接电路板。有关更多详细说明,请参阅 MinimOSD 项目维基(MinimOSD Project wiki)。 6 MinimOSD-extra NG 该项目位于此处(here);文档位于此处(here);支撑线位于此…...
GD32 MCU碰到IIC总线卡死怎么办?
大家在使用MCU IIC通信时,若碰到设备复位或者总线干扰等情况,可能会导致IIC总线卡死,表现上总线上SDA或者SCL其中一根线为低电平,IIC总线一直处于busy状态。此时若代码上一直等待总线空闲,则可能导致软件死机ÿ…...
算法——动态规划:0/1 背包问题
文章目录 一、问题描述二、解决方案1. DP 状态的设计2. 状态转移方程3. 算法复杂度4. 举例5. 实现6. 滚动数组6.1 两行实现6.2 单行实现6.3 优缺点 三、总结 一、问题描述 问题的抽象:给定 n n n 种物品和一个背包,第 i i i 个物品的体积为 c i c_i …...
又是奇瑞,“统一下班时间”过去不久,最近又整新活了...
奇瑞 345 345 可不是奇瑞的汽车型号,而是奇瑞 7 月份会议文章中提出的新策略。 简单来说,要提高加班效率,实现 3 个人干 5 个人活,拿 4 个人的工资,要把员工当成家人一样看待,要对他们的健康幸福负责。 前面…...
ubuntu24.04lts cmake编译 opencv4.5.4 contrib的一些问题
编译之前一定要安装好必须的库,否则即使提示编译成功,调用opencv后也可能会有问题 sudo apt-get update sudo apt-get upgradesudo apt-get install -y g sudo apt-get install -y cmake sudo apt-get install -y make sudo apt-get install…...
大数据面试SQL(三):每分钟在线直播人数
文章目录 每分钟在线直播人数 一、题目 二、分析 三、SQL实战 四、样例数据参考 每分钟在线直播人数 一、题目 有如下数据记录直播平台主播上播及下播时间,根据该数据计算出平台每分钟的在线直播人数。 这里用主播名称做统计,前提是主播名称唯一…...
python中执行mysql操作并将python脚本共享
mysql下载路径: MySQL :: MySQL Community Downloads [root2 ~]# vim py001.py a3 b4 print(ab) print(a**2b**2) [root2 ~]# python py001.py 7 25 [root2 ~]# python3 >>> import random >>> random <module rando…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
数据库正常,但后端收不到数据原因及解决
从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...
