跨时钟域总结
跨时钟域总结
秋招学习跨时钟域
总结一下吧
异步电路
设计中有两个频率不同的时钟(也可能多个),而有数据在两组时钟之间传输
单bit跨时钟域
慢时钟域数据-> 快时钟域
- 方法 : 使用两个
锁存器
(打两拍)
数据跨时钟域同步过程中,脉冲宽度
会改变,不影响同步结果
`timescale 1ns/1ns//慢时钟数据跨时钟域到快时钟域
module cdc_slow2fast(input clk_s ,input pluse_s ,input clk_f ,output pluse_f
);reg pluse_s_ff1 ;reg pluse_s_ff2 ; //慢时钟下的数据在快时钟下打两拍always @(posedge clk_f)beginpluse_s_ff1 <= pluse_s ;pluse_s_ff2 <= pluse_s_ff1 ;endassign pluse_f = pluse_s_ff2 ;
endmodule
快时钟域数据 -> 慢时钟域
脉冲展宽
+同步
那么将快时钟域的信号进行展宽
,但是会出现毛刺
`timescale 1ns/1nsmodule cdc_fast2slow(input clk_f ,input clk_s ,input pulse_f,output pulse_s
);//在快时钟域下打两拍 //目的是为了将脉冲信号展宽,方便识别reg [2:0] pulse_f_ff;always @(posedge clk_f) beginpulse_f_ff <= {pulse_f_ff[1:0],pulse_f} ;endwire pulse_s_w ;assign pulse_s_w = | pulse_f_ff ;//按位或reg pulse_s_ff1;reg pulse_s_ff2;always @(posedge clk_s) beginpulse_s_ff1 <= pulse_s_w ;pulse_s_ff2 <= pulse_s_ff1 ;endassign pulse_s = pulse_s_ff2;
endmodule
-
方法2 :
脉动电平检测
+双触发器同步
+边缘检测
- 对快时钟域的电平设置检测信号(翻转)
- 将翻转信号进行跨时钟域处理
- 使用两次寄存器打节拍
- 将两个寄存器信号做异或
`timescale 1ns/1nsmodule cdc_fast2slow_new(input clk_f ,input clk_s ,input pulse_f,output pulse_s
);//标志寄存器: 检测快时钟域中的脉冲信号reg pulse_f_flag = 0;always @(posedge clk_f) beginif(pulse_f)beginpulse_f_flag <= ~pulse_f_flag ;end else beginpulse_f_flag <= pulse_f_flag ;end endreg pulse_f_ff1;reg pulse_f_ff2;reg pulse_s_ff3; //这里的第三拍为了异或操作//对标志寄存器做跨时钟域处理always @(posedge clk_s) beginpulse_f_ff1 <= pulse_f_flag ;pulse_f_ff2 <= pulse_f_ff1 ;pulse_s_ff3 <= pulse_f_ff2 ;endassign pulse_s = pulse_s_ff3 ^ pulse_f_ff2;
endmodule
多bit跨时钟域处理
- 多bit的跨时钟域为什么不能直接打两拍?
每一个寄存器中的数据在进行跨时钟域处理的时候,从源寄存器到目的寄存器之间的延迟可能会出现不同的路径长度,所以延迟也不能控制完全相等。
方法1 : 慢时钟域-> 快时钟域 : 格雷码
+同步
采用格雷码。使相邻两个多bit数据传输过程中,只有一个bit发生改变
。(多bit变化到单bit变化)降低亚稳态
的产生。
格雷码只能在地址或者数值依次增加的情况下使用。
数值不是依次增加,那么格雷码相邻的数值不止一个bit发生改变
。
`timescale 1ns/1ns//格雷码+同步的方法只适合两种情况
// 1. 多bit的跨时钟域数值(地址or数据)必须依次变化(增大 or 减小)
// 2. 必须是慢时钟域数据到快时钟域数据module gray_cdc(input clk_s,input clk_f,input [3:0] data_in,output [3:0] data_out
);//二进制2格雷码wire [3:0] gray_data;assign gray_data = (data_in>>1) ^ data_in ;//跨时钟域处理reg [3:0] gray_data_ff1;reg [3:0] gray_data_ff2;//格雷码2二进制reg [3:0] out_data;//跨时钟域处理always @(posedge clk_f ) begingray_data_ff1 <= gray_data ;gray_data_ff2 <= gray_data_ff1 ;end//格雷码2二进制integer i;always @(*) beginout_data[3] <= gray_data_ff2[3];for(i=2;i>=0;i=i-1) beginout_data[i] = (gray_data_ff2[i] ^ out_data[i+1]);endendassign data_out =out_data; endmodule
方法2 : 快时钟域 -> 慢时钟域 : Dmux
格雷码+同步
的方法只适合数值依次变化(累加or累减),并且是慢时钟域到快时钟域。
当快时钟域源数据向慢时钟域传输,数据可能被慢时钟域遗漏。
因此在Dmux方法中,需要快时钟域数据在快时钟域下保持几个时钟周期:满足源数据有足够时间传向目的数据
- 条件:支持多bit跨时钟域处理(支持跳变的多bit数据),DMUX在源端的clk信号必须维持好几个目的断时钟周期时间(3-4个)
module dmux_cdc #(parameter tx_clk = 100,parameter rx_clk = 50 ,parameter DATA_WIDTH = 8
)
(input clk_f ,input clk_s ,input rst_n ,input [DATA_WIDTH-1:0] data_in ,input valid_in ,output [DATA_WIDTH-1 :0] data_out,output valid_out
);reg [DATA_WIDTH-1:0] data_in_ff1;reg valid_in_ff1;//在快时钟域打一拍always @(posedge clk_f or negedge rst_n)beginif(!rst_n)begindata_in_ff1 <= 'd0;valid_in_ff1 <= 'd0;end else begindata_in_ff1 <= data_in;valid_in_ff1 <= valid_in ;endendreg valid_in_ff2;reg valid_in_ff3;//valid信号在慢时钟域打两拍always @(posedge clk_s)beginif(!rst_n)beginvalid_in_ff2<= 'd0;valid_in_ff3<= 'd0;end else beginvalid_in_ff2<= valid_in_ff1 ;valid_in_ff3<= valid_in_ff2 ;endend//选择器(MUX)reg [DATA_WIDTH-1 : 0] data_out_ff1;reg valid_out_ff1;always @(posedge clk_s)beginif(!rst_n)begindata_out_ff1<= 'd0;valid_out_ff1 <= 'd0;end else if(valid_in_ff3) begindata_out_ff1 <= data_in_ff1;valid_out_ff1 <= 'd1;end else begindata_out_ff1 <= data_out_ff1;valid_out_ff1 <= 'd0;endendassign data_out = data_out_ff1;assign valid_out = valid_out_ff1 ;endmodule
相关文章:
跨时钟域总结
跨时钟域总结 秋招学习跨时钟域 总结一下吧 异步电路 设计中有两个频率不同的时钟(也可能多个),而有数据在两组时钟之间传输 单bit跨时钟域 慢时钟域数据-> 快时钟域 方法 : 使用两个锁存器 (打两拍) 数据跨时钟域同步过程中,脉冲宽度会改变,不影响同步结…...

富婆和富公子都在看的负载均衡和Haproxy大全
一.负载均衡 1.1:什么是负载均衡 负载均衡: Load Balance ,简称 LB ,是一种服务或基于硬件设备等实现的高可用反向代理技术,负载均 衡将特定的业务(web 服务、网络流量等 ) 分担给指定的一个或多个后端特定的服务器或…...

VScode找python环境 (conda)
第一步 CtrlshiftP 第二步 框框里输入:Python:Select Interpreter...

C# Winform序列化和反序列化
在NET Framework 4.7.2中不能用Newtonsoft.Json进行序列化和反序列化,为解决此问题,采用System.Text.Json进行序列化,注意要添加System.Memory的引用。 1、创建测试类 using System; using System.Collections.Generic; using System.Linq; …...
crc原理概述
CRC(循环冗余校验)是一种错误检测技术,用于确保数据在传输或存储过程中没有发生变化。它通过将数据视为一个多项式,利用二进制除法得到一个校验码(CRC值)。接收方使用相同的算法验证数据和CRC值是否匹配&am…...

C++要求或禁止在堆中产生对象
有时你想这样管理某些对象,要让某种类型的对象能够自我销毁,也就是能够“delete this”。很明显这种管理方式需要此类型对象被分配在堆中。而其它一些时候你想获得一种保障:“不在堆中分配对象,从而保证某种类型的类不会发生内存泄…...

为什么阿里开发手册推荐用静态工厂方法代替构造器?
🍅 作者简介:哪吒,CSDN2021博客之星亚军🏆、新星计划导师✌、博客专家💪 🍅 哪吒多年工作总结:Java学习路线总结,搬砖工逆袭Java架构师 🍅 技术交流:定期更新…...
前端写法建议【让项目更加易于维护】
背景 标题前提条件: 没有字典接口、或其他原因,需要前端手动维护的情况 示例环境:vue2,其他项目同理 示例 如果项目有某种类别,前端和后端约定好了,某些情况下,需要前端写死时。 比如有字段…...
EasyExcel 自定义转换器、自定义导出字典映射替换、满足条件内容增加样式,完整代码+详细注释说明
虽然最之前是在其他地方看到的,但最终因缘巧合下找到了原文,还是尊重一下原作者。 参考引用了这位佬的博客,确实方便使用。 https://blog.csdn.net/qq_45914616/article/details/137200688?spm1001.2014.3001.5502 这是一个基于Easyexcel通过…...

C语言学习笔记 Day10(指针--中)
Day10 内容梳理: 目录 Chapter 7 指针 7.4 指针 & 数组 (1)指针操作数组元素 (2)指针加减运算 1)加法 2)减法 (3)指针数组 7.5 多级指针 Chapter 7 指针 …...
网页显示打印 pdf
文件服务使用 minio,使用 nginx 反向代理。 将文件存放在 minio 上,如果是公开的文件,则统一放到一个桶,设置为公开只读。 如果是私有文件,则使用临时链接,给有权限的用户查看和打印。 要实现在 html 页…...

1948-2024.5金融许可信息明细数据
1948-2024.5金融许可信息明细数据 1、时间:1948-2024.5 2、指标:来源表、机构编码、机构名称、所属银行、机构类型、业务范围、机构住所、地理坐标、行政区划代码、所属区县、所属城市、所属省份、邮政编码、发证日期、批准日期、发证机关、流水号、是…...

【笔记】从零开始做一个精灵龙女-画贴图阶段(终)
这篇主要是细节,包括花纹和其它一些细化 皮肤 脖子 脖子一定要压暗,不然前后关系体现不出来 脸 1. 忘了有uv缝了,记得打开投影模式画 顺着头发轨迹长的方向画出发际线 背包手镯 1.先画出暗色花纹: 2.再加亮色,亮…...
从MySQL到Elasticsearch:创建酒店索引案例
在现代的数据管理中,Elasticsearch(简称ES)因其强大的搜索功能和灵活的索引结构而受到广泛欢迎。本篇博客将介绍如何根据MySQL数据库中的酒店表定义,创建一个相应的Elasticsearch索引。 MySQL与Elasticsearch的对比 在开始之前&…...
Webkit与Web Push API:提升用户体验的推送技术
Web Push API是一种允许网站向用户发送通知的Web技术,即使用户没有打开网站也能接收到信息。这项技术可以显著提升用户的参与度和满意度。Webkit,作为Safari和其他浏览器的内核,对Web Push API的支持情况如何?本文将深入探讨Web P…...
Java线程池的拒绝策略
在 Java 线程池中,常见的拒绝策略: AbortPolicy(中止策略) 特点:直接抛出 RejectedExecutionException 异常来拒绝新任务的提交。应用场景:适用于对系统的稳定性要求较高,不希望丢失任务&#…...

【C++进阶】继承
【C进阶】继承 🥕个人主页:开敲🍉 🔥所属专栏:C🥭 🌼文章目录🌼 1. 继承的概念及定义 1.1 继承的概念 1.2 继承定义 1.2.1 定义格式 1.2.2 继承父类成员访问方式的变化 1.3 继承类模…...

立体相机镜面重建(一)镜面标定
无论是单目、双目或者是多屏幕镜面重建,都需要事先对屏幕和相机的相对位置进行标定,求得相机到屏幕之间的相对变换关系。如果求得屏幕和相机之间的变换关系呢?接下来是标定流程。 (一)准备: 1)…...
【如何有效解决前端Vue中的常见难题】
🐟作者简介:一名大三在校生,喜欢编程🪴 🐙个人主页🥇:Aic山鱼🐠WeChat:z7010cyy 🦈系列专栏:🏞️ 前端-JS基础专栏✨前端-Vue框架专栏…...

CLAMP-1靶机渗透测试
一、靶机下载地址 https://www.vulnhub.com/entry/clamp-101,320/ 二、信息收集 1、主机发现 # 使用命令 nmap 192.168.145.0/24 -sn | grep -B 2 "00:0C:29:88:B4:BF" 2、端口扫描 # 使用命令 nmap 192.168.145.0/24 -p- -sV 3、指纹识别 # 使用命令 whatweb …...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...