1DCNN-2DResNet并行故障诊断模型
往期精彩内容:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理
Python轴承故障诊断入门教学-CSDN博客
Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客
Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客
Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客
轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客
Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客
Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型_pytorch使用tcn网络进行故障诊断 csdn-CSDN博客
独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客
Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客
Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客
注意力魔改 | 超强轴承故障诊断模型!-CSDN博客
Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客
基于k-NN + GCN的轴承故障诊断模型-CSDN博客
独家首发 | 基于 KAN、KAN卷积的轴承故障诊断模型-CSDN博客
故障诊断 | 创新模型更新:基于SSA-CNN-Transformer诊断模型-CSDN博客
Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客
● 数据集:经测试,模型在CWRU西储大学轴承数据集 和 哈工大航天发动机轴承数据集上表现分类准确率 均为99%!
● 环境框架:python 3.9 pytorch 1.8 及其以上版本均可运行
● 准确率:测试集99%
● 使用对象:论文需求、毕业设计需求者
● 代码保证:代码注释详细、即拿即可跑通。

创新点:
分支一:轴承故障时序信号作为CNN模块输入,通过一系列的1D卷积层和池化层操作,实现对信号数据的时域和局部特征提取;
分之二:轴承故障信号先通过堆叠为2维矩阵,然后是利用通过2D的ResNet卷积层和残差块对数据进行全局特征提取;
并行融合:将1D CNN模块和2D ResNet模块的输出进行并行融合,以获得融合了时域和频域信息的特征表示。这些特征表示经过全连接层进行分类,最终得到故障诊断的结果。通过1D CNN和2D ResNet的并行处理,该模型能够综合利用时域和频域信息,从而提高故障诊断的准确性和鲁棒性,充分挖掘数据之间的关联性,提高了故障诊断的性能。
前言
本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现1DCNN-2DResNet并行模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru数据集-CSDN博客
1 轴承故障数据的预处理
1.1 导入数据
参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路
1.2 数据预处理,制作数据集

2 基于Pytorch的1DCNN-2DResNet的轴承故障诊断
2.1 定义1DCNN-2DResNet分类网络模型

2.2 设置参数,训练模型

50个epoch,准确率100%,用1DCNN-2DResNet并行网络分类效果显著,模型能够充分提取轴承故障信号的全局空间和局部特征,收敛速度快,性能优越,精度高,效果明显!
2.3 模型评估
准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据如下:
对数据集和代码感兴趣的,可以关注最后一行
# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100) # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#代码和数据集:https://mbd.pub/o/bread/ZpWakplp

相关文章:
1DCNN-2DResNet并行故障诊断模型
往期精彩内容: Python-凯斯西储大学(CWRU)轴承数据解读与分类处理 Python轴承故障诊断入门教学-CSDN博客 Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客 Python轴承故障诊断 (14)高创新故障识别模型-CSDN…...
Java设计模式(原型模式)
定义 使用原型实例指定待创建对象的类型,并且通过复制这个原型来创建新的对象。 角色 Prototype(抽象原型角色) ConcretePrototype(具体原型角色) Client(客户端角色 优点 简化对象的创建过程,…...
C/C++ 知识点:typedef 关键字
文章目录 一、typedef 关键字1、 基本用法2、常见用法2.1、为基本数据类型定义别名2.2、为结构体或联合体定义别名2.3、为指针类型定义别名2.4、为复杂模板类型定义别名 3、注意事项4、总结 前言: 在C(以及C语言)中,typedef 关键字…...
【Linux学习】进程间通信之 匿名管道 与 基于管道的进程池
🍑个人主页:Jupiter. 🚀 所属专栏:Linux从入门到进阶 欢迎大家点赞收藏评论😊 目录 🍑进程间通信🐬进程间通信目的 📚管道 📕管道的原理🐧用fork来共享管道原…...
小团队如何选需求管理软件?8款顶级推荐
本文将分享8款适合小团队的需求管理软件:PingCode、Worktile、Tapd、Teambition、禅道、Asana、Jama Connect、Aha!。 在小团队中管理需求时,寻找合适的软件工具常常让人头疼,不同的需求管理软件提供各种功能,但哪些功能真正适合…...
docker操作入门
1.创建镜像,使用当前文件 docker build -t experience . 2.运行容器 docker run -d -p 8501:8501 --name my-running-app my-python-api docker run -p 8508:8508 experience docker run -p 8508:8508 -p 8509:8509 experience 3.查看容器状态 docker ps docker p…...
简单的射箭小游戏网页源码
简单的射箭小游戏网页源码,对准靶心开启你的射击之旅吧 微信扫码免费获取源码...
Python | Leetcode Python题解之第331题验证二叉树的前序序列化
题目: 题解: class Solution:def isValidSerialization(self, preorder: str) -> bool:pre 1for i in preorder.split(,):if i.isdigit():if pre 0:return Falsepre 1else:if pre 0:return Falsepre - 1return pre 0...
0x3 “护网行动”守之道
一、护网防守目标系统 二、护网防守之利器 通过安全流程控制、安全技术保障、安全工具支撑、安全能力提升四个层次全面构成安全防御体系。 安全技术名称解释 IPS(入侵防御系统)WAF(Web应用防火墙)IDS(入侵检测系统&a…...
白骑士的Matlab教学高级篇 3.1 高级编程技术
系列目录 上一篇:白骑士的Matlab教学进阶篇 2.5 Simulink 高级编程技术在MATLAB中扮演着至关重要的角色,帮助用户更高效地编写复杂程序、提高代码的可维护性和可读性。本节将介绍面向对象编程、函数句柄与回调函数、错误处理与调试的相关内容。 面向对…...
haproxy简介与用法
一、负载均衡 1.1、概念: 负载均衡SLB(Server Load Balancer)是一种对流量进行按需分发的服务,通过将流量分发到不同的后端服务来扩展应用系统的服务吞吐能力,并且可以消除系统中的单点故障,提升应用系统…...
Geoscene Pro的三维
一、场景设置 1.3D视图分为全局场景和局部场景。在Geoscene Pro中,两个场景可以自由切换。 (1)全局场景有固定的坐标系GCS(WGS84、CGCS2000),并在全球比例尺下展示(全球范围)。可以…...
论文阅读 - Scaling Up k-Clique Densest Subgraph Detection | SIGMOD 2023
1. 论文背景 密集子图发现(Densest Subgraph Discovery)是图挖掘领域的一个基础研究方向,并且近年来在多个应用领域得到了广泛研究。特别是在生物学、金融学和社交网络分析等领域,密集子图的发现对理解复杂网络结构和行为具有重要…...
前端框架(三件套)
学习网站 HTML 系列教程(有广告) HTML(超文本标记语言) | MDN (mozilla.org)(英文不太友好) 1.HTML5 & CSS3 1.1HTML5表格 <!DOCTYPE html> <html lang"en"> <head>…...
MemoryCache 缓存 实用
MemoryCache 缓存 实用,相关逻辑代码里已详细注释, 在Java中创建一个单例模式(Singleton Pattern)的MyMemoryCache类,可以采用多种方法,其中最常见的是使用“饿汉式”和“懒汉式”(线程安全和非线程安全&am…...
Java设计模式(命令模式)
定义 将一个请求封装为一个对象,从而让你可以用不同的请求对客户进行参数化,对请求排队或者记录请求日志,以及支持可撤销的操作。 角色 抽象命令类(Command):声明用于执行请求的execute方法,通…...
什么是 CI/CD?
什么是 CI/CD? CI/CD(Continuous Integration/Continuous Deployment)是一种软件开发实践,旨在通过自动化的方式频繁地构建、测试和发布软件。CI/CD 可以显著提高软件交付的速度和质量,使团队能够更快地响应市场变化和…...
【免费】最新区块链钱包和私钥的助记词碰撞器,bybit使用python开发
使用要求 1、用的是google里面的扩展打包成crx文件,所以在使用之前你需要确保自己电脑上有google浏览器,而且google浏览器版本需要在124之上。(要注意一下,就是电脑只能有一个Chrome浏览器) 2、在win10上用vscode开发…...
【苍穹外卖JAVA项目】第2天:新增员工
在EmployeeMapper.java中插入数据:一、新增员工 1.产品原型 2.接口设计 由于需要提交员工信息,用post请求方式,可以携带json数据 3.设计数据库的employee表 4.设计DTO 数据传输对象(DTO):封装前端提交过…...
队列的实现及循环队列
一、队列的概念及结构 队列只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表。队列具有先进先出FIFO(Fist In First Out)。 入队列:进行插入操作的一端称为队尾。 出队列:进行删除操作的一端称为…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
32位寻址与64位寻址
32位寻址与64位寻址 32位寻址是什么? 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元(地址),其核心含义与能力如下: 1. 核心定义 地址位宽:CPU或内存控制器用32位…...
Android屏幕刷新率与FPS(Frames Per Second) 120hz
Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数,单位是赫兹(Hz)。 60Hz 屏幕:每秒刷新 60 次,每次刷新间隔约 16.67ms 90Hz 屏幕:每秒刷新 90 次,…...

