当前位置: 首页 > news >正文

dfs和bfs能解决的问题

一.理解暴力穷举之dfs和bfs

暴力穷举

暴力穷举是在解决问题中最常用的手段,而dfs和bfs算法则是这个手段的两个非常重要的工具。
其实,最简单的穷举法是直接遍历,如数列求和,遍历一个数组即可求得所问答案,这与我在前两篇博客中讲述的动态规划算法执行方式其实是一样的,其特点我们说过,有三个“可分解,可一次解决,可储存”,可分解是不管有多大多复杂的数据都能用同一种办法解决的前提,可一次解决,代表每一个子问题的解决答案即是当前最优解,也是全局最优解的子解,这叫做无后效性,无后效性其实表面意思是局部决策对全局决策无关,但准确来说,是局部决策的最优解之外的决策永远不会成为全局决策的子决策,最后若可储存子问题的答案,我们就可以实现直接遍历或动态规划得到我们所需要的答案。

dfs和bfs的特点

在前言我们提到了直接遍历的穷举办法,而动态规划也是其中之一,具有”可分解,可一次解决,可存储“的特点,而dfs和bfs与它们的唯一区别就是”不可一次解决“,也就是并非有最优解,子问题的每一个决策都有可能是全局解的子解,这叫做有后效性,但准确来说,是局部决策都可能会成为全局决策的子决策,那么如何解决这类问题呢,dfs和bfs算法就是这类问题的天敌

二.掌握dfs和bfs解决问题的方法

1.dfs通过其能够“回溯”的本领解决有后效性

例题

题目链接

分析

题目问的是,在给定n*n棋盘内,棋子位置相互不冲突的情况下,摆放在棋盘区域的棋子个数为k的方案数是多少
1.可先放前面的棋子,再放后面的棋子(可分解)
2.对每个棋盘位置都有放或不放两种决策,每个棋子的这两种决策都可能满足题意(有后效性)
3.在从前到后决策的过程中,可记录已放棋子个数(可存储)

代码

#include<iostream>
#include<cstdio>using namespace std;const int N = 100;
bool col[N],row[N];
char g[N][N];
int cnt = 0,n,m;
void dfs(int x,int y,int k)
{if(x == n) return;if(k == m) {cnt++;return;}if(y == n){y = 0;x++;}dfs(x,y+1,k);//先递归遍历左子树,即不放皇后的操作if(!col[y]&&!row[x]&&(g[x][y] == '#')){col[y] = row[x] = true;dfs(x,y+1,k+1);//再递归遍历右子树col[y] = row[x] = false;}
}
int main()
{while(1){scanf("%d%d",&n,&m);if(n == -1&&m == -1) break;for(int i = 0;i<n;i++)for(int j = 0;j<n;j++)cin>>g[i][j];dfs(0,0,0);printf("%d\n",cnt);cnt = 0;}return 0;
}

2.bfs通过其能够“排队”的本领解决有后效性

例题

题目链接

分析

题目问的是,在给定L*R*C迷宫内,从“S”走到“E”至少需要多少分钟
1.可一步一步走(可分解)
2.对每一步都有上下左右前后,每一步的决策都可能满足题意(有后效性)
3.在从前到后决策的过程中,可记录已用掉多少分钟(可存储)

代码

#define _CRT_SECURE_NO_WARNINGS
//#define LOCAL
#include <iostream>
#include <cstring>
#include <queue>
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int N=35;
int L,R,C;
int sx,sy,sz,ex,ey,ez;
bool flag;
char g[N][N][N];
bool st[N][N][N];
int dist[N][N][N];
struct Node
{int z,x,y;
};
int dx[]={1,-1,0,0,0,0};
int dy[]={0,0,1,-1,0,0};
int dz[]={0,0,0,0,1,-1};
void bfs(int sz,int sx,int sy)
{memset(dist,0x3f,sizeof dist);Node input;input.z=sz,input.x=sx,input.y=sy;queue<Node>q;q.push(input);st[sz][sx][sy]=1;dist[sz][sx][sy]=0;while(q.size()){Node t=q.front();if(t.z==ez&&t.x==ex&&t.y==ey){flag=1;break;}q.pop();for(int i=0;i<6;i++){int a=t.z+dz[i];int b=t.x+dx[i];int c=t.y+dy[i];if(a<0||b<0||c<0||a>=L||b>=R||c>=C)continue;if(st[a][b][c]||g[a][b][c]=='#')continue;st[a][b][c]=1;Node tmp;tmp.z=a,tmp.x=b,tmp.y=c;q.push(tmp);dist[a][b][c]=dist[t.z][t.x][t.y]+1;}}
}
void solve()
{while(~scanf("%d%d%d",&L,&R,&C)&&(L||R||C)){for(int i=0;i<L;i++)for(int j=0;j<R;j++)scanf("%s",g[i][j]);for(int i=0;i<L;i++)for(int j=0;j<R;j++)for(int k=0;k<C;k++){if(g[i][j][k]=='S')sz=i,sx=j,sy=k;if(g[i][j][k]=='E')ez=i,ex=j,ey=k;}memset(st,0,sizeof st);flag=0;bfs(sz,sx,sy);if(flag) printf("Escaped in %d minute(s).\n",dist[ez][ex][ey]);else puts("Trapped!");}return;
}int main()
{
#ifdef LOCALfreopen("data.in", "r", stdin);freopen("data.out", "w", stdout);
#endifint t = 1;//cin>>t;while(t--){solve();}return 0;
}

~感谢观看❥(^_-)

相关文章:

dfs和bfs能解决的问题

一.理解暴力穷举之dfs和bfs暴力穷举暴力穷举是在解决问题中最常用的手段&#xff0c;而dfs和bfs算法则是这个手段的两个非常重要的工具。其实&#xff0c;最简单的穷举法是直接遍历&#xff0c;如数列求和&#xff0c;遍历一个数组即可求得所问答案&#xff0c;这与我在前两篇博…...

静态通讯录,适合初学者的手把手一条龙讲解

数据结构的顺序表和链表是一个比较困难的点&#xff0c;初见会让我们觉得有点困难&#xff0c;正巧C语言中有一个类似于顺序表和链表的小程序——通讯录。我们今天就来讲一讲通讯录的实现&#xff0c;也有利于之后顺序表和链表的学习。 目录 0.通讯录的初始化 1.菜单的创建…...

【你不知道的 CSS】你写的 CSS 太过冗余,以至于我对它下手了

:is() 你是否曾经写过下方这样冗余的CSS选择器: .active a, .active button, .active label {color: steelblue; }其实上面这段代码可以这样写&#xff1a; .active :is(a, button, label) {color: steelblue; }看~是不是简洁了很多&#xff01; 是的&#xff0c;你可以使用…...

Lesson 8.1 决策树的核心思想与建模流程

文章目录一、借助逻辑回归构建决策树1. 决策树实例2. 决策树知识补充2.1 决策树简单构建2.2 决策树的分类过程2.3 决策树模型本质2.4 决策树的树生长过程2.5 树模型的基本结构二、决策树的分类与流派1. ID3(Iterative Dichotomiser 3) 、C4.5、C5.0 决策树2. CART 决策树3. CHA…...

【算法】FIFO先来先淘汰算法分析和编码实战

背景 在设计一个系统的时候&#xff0c;由于数据库的读取速度远小于内存的读取速度 为加快读取速度&#xff0c;将一部分数据放到内存中称为缓存&#xff0c;但内存容量是有限的&#xff0c;当要缓存的数据超出容量&#xff0c;就需要删除部分数据 这时候需要设计一种淘汰机制…...

二分查找——我欲修仙(功法篇)

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️我欲修仙】 学习名言&#xff1a;临渊羡鱼,不如退而结网——《汉书董仲舒传》 系列文章目录 第一章 ❤️ 二分查找 文章目录系列文章目录前言&#x1f697;&#x1f697;&#x1f697;二分查找&…...

Python 多线程

文章目录一、简介1.1 多线程的特性1.2 GIL二、线程1.2 单线程1.3 多线程三、线程池3.1 pool.submit3.2 pool.map四、Lock&#xff08;线程锁&#xff09;4.1 无锁导致的线程资源异常4.2 有锁五、Event&#xff08;事件&#xff09;5.1 简介5.2 示例六、Queue&#xff08;队列&a…...

JVM笔记(九)选择合适的垃圾收集器

Epsilon收集器Epsilon收集器由RedHat公司在JEP 318中提出&#xff0c;在此提案里Epsilon被形容成一个无操作的收集器&#xff08;A No-Op Garbage Collector&#xff09;&#xff0c;而事实上只要Java虚拟机能够工作&#xff0c;垃圾收集器便不可能是真正“无操作”的。原因是“…...

二维图像处理到三维点云处理

一、Opencv和PCL 下面是opencv和pcl的特点、区别和联系的详细对比表格。 特点/区别/联系OpenCVPCL英文全称Open Source Computer Vision LibraryPoint Cloud Library语言C、Python、JavaC功能图像处理(图像处理和分析、特征提取和描述、图像识别和分类、目标检测和跟踪等)、计…...

leetcode 删除有序数组中的重复项

题目 给你一个 升序排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。 由于在某些语言中不能改变数组的长度&#xff0c;所以必须将结果放在数组nums的第一…...

JVM学习.03 类加载机制

1、前言从事Java开发工作的都知道&#xff0c;Java程序提交到JVM运行时&#xff0c;需要编译成Class文件&#xff0c;才能被JVM加载运行。那么这些Class文件进入到虚拟机后会发生什么&#xff1f;以及Class是如何被加载的&#xff1f;这些都是本文要讲解的部分。2、类加载时机所…...

Celery使用:优秀的python异步任务框架

目录Celery 简介介绍安装基本使用Flask使用Celery异步任务定时任务Celery使用Flask上下文进阶使用参考停止Worker后台运行Celery 简介 介绍 Celery 是一个简单、灵活且可靠的&#xff0c;处理大量消息的分布式系统&#xff0c;并且提供维护这样一个系统的必需工具。 它是一个…...

第十四届蓝桥杯三月真题刷题训练——第 19 天

第 1 题&#xff1a;灌溉_BFS板子题 题目描述 小蓝负责花园的灌溉工作。 花园可以看成一个 n 行 m 列的方格图形。中间有一部分位置上安装有出水管。 小蓝可以控制一个按钮同时打开所有的出水管&#xff0c;打开时&#xff0c;有出水管的位置可以被认为已经灌溉好。 每经过一分…...

类和对象 - 下

本文已收录至《C语言》专栏&#xff01; 作者&#xff1a;ARMCSKGT 目录 前言 正文 初始化列表 成员变量的定义与初始化 初始化列表的使用 变量定义顺序 explicit关键字 隐式类型转换 自定义类型隐式转换 explicit 限制转换 关于static static声明类成员 友元 友…...

【云原生】Linux基础IO(文件理解与操作)

✨个人主页&#xff1a; Yohifo &#x1f389;所属专栏&#xff1a; Linux学习之旅 &#x1f38a;每篇一句&#xff1a; 图片来源 &#x1f383;操作环境&#xff1a; CentOS 7.6 阿里云远程服务器 Great minds discuss ideas. Average minds discuss events. Small minds disc…...

CentOS 7 安装 mysql 8.0 客户端

只想安装 mysql-client 8.0 &#xff0c; 结果发现直接 yum install mysql mysql-client 安装的版本是 mysql Ver 15.1 Distrib 5.5.68-MariaDB &#xff0c;这个版本太低&#xff0c;连接其他服务器上的 mysql 8.0 时总是失败&#xff0c;因为 mysql 8.0 加密方式改变了&#…...

Ubuntu下载、配置、安装和编译opencv

1 安装相关依赖安装opencv前&#xff0c;需要先准备好编译器、相关依赖sudo apt-get install gcc g cmake vim sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg-dev libswscale-dev libtiff5-dev sudo apt-get install libgtk2.0-…...

第七讲 贪心

文章目录股票买卖 II货仓选址&#xff08;贪心:排序中位数&#xff09;糖果传递&#xff08;❗贪心&#xff1a;中位数&#xff09;雷达设备&#xff08;贪心排序&#xff09;付账问题&#xff08;平均值排序❓&#xff09;乘积最大&#xff08;排序/双指针&#xff09;后缀表达…...

数字藏品的未来及发展趋势

随着互联网的普及以及数字文化的日益发展&#xff0c;数字藏品作为一种全新的收藏方式正在逐步兴起。数字藏品可以是数字版权、数字艺术品、数字音乐以及数字视频等形式&#xff0c;这些藏品通过数字化技术保存下来&#xff0c;并在互联网上进行传播和交易。数字藏品的发展趋势…...

值得记忆的STL常用算法,分分钟摆脱容器调用的困境,以vector为例,其余容器写法类似

STL常用算法 概述&#xff1a; 算法主要是由头文件<algorithm> <functional> <numeric>组成 <algorithm>是所有STL头文件中最大的一个&#xff0c;范围涉及到比较、交换、查找、遍历操作、复制、修改等等 <nuneric>体积很小&#xff0c;只包括…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

Tauri2学习笔记

教程地址&#xff1a;https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引&#xff1a;https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多&#xff0c;我按照Tauri1的教程来学习&…...