当前位置: 首页 > news >正文

leetcode线段树(2940. 找到 Alice 和 Bob 可以相遇的建筑)

前言

经过前期的基础训练以及部分实战练习,粗略掌握了各种题型的解题思路。现阶段开始专项练习。

描述

给你一个下标从 0 开始的正整数数组 heights ,其中 heights[i] 表示第 i 栋建筑的高度。

如果一个人在建筑 i ,且存在 i < j 的建筑 j 满足 heights[i] < heights[j] ,那么这个人可以移动到建筑 j 。

给你另外一个数组 queries ,其中 queries[i] = [ai, bi] 。第 i 个查询中,Alice 在建筑 ai ,Bob 在建筑 bi 。

请你能返回一个数组 ans ,其中 ans[i] 是第 i 个查询中,Alice 和 Bob 可以相遇的 最左边的建筑 。如果对于查询 i ,Alice  Bob 不能相遇,令 ans[i] 为 -1 。

示例 1:

输入:heights = [6,4,8,5,2,7], queries = [[0,1],[0,3],[2,4],[3,4],[2,2]]
输出:[2,5,-1,5,2]
解释:第一个查询中,Alice 和 Bob 可以移动到建筑 2 ,因为 heights[0] < heights[2] 且 heights[1] < heights[2] 。
第二个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[0] < heights[5] 且 heights[3] < heights[5] 。
第三个查询中,Alice 无法与 Bob 相遇,因为 Alice 不能移动到任何其他建筑。
第四个查询中,Alice 和 Bob 可以移动到建筑 5 ,因为 heights[3] < heights[5] 且 heights[4] < heights[5] 。
第五个查询中,Alice 和 Bob 已经在同一栋建筑中。
对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。
对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

示例 2:

输入:heights = [5,3,8,2,6,1,4,6], queries = [[0,7],[3,5],[5,2],[3,0],[1,6]]
输出:[7,6,-1,4,6]
解释:第一个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[0] < heights[7] 。
第二个查询中,Alice 和 Bob 可以移动到建筑 6 ,因为 heights[3] < heights[6] 且 heights[5] < heights[6] 。
第三个查询中,Alice 无法与 Bob 相遇,因为 Bob 不能移动到任何其他建筑。
第四个查询中,Alice 和 Bob 可以移动到建筑 4 ,因为 heights[3] < heights[4] 且 heights[0] < heights[4] 。
第五个查询中,Alice 可以直接移动到 Bob 的建筑,因为 heights[1] < heights[6] 。
对于 ans[i] != -1 ,ans[i] 是 Alice 和 Bob 可以相遇的建筑中最左边建筑的下标。
对于 ans[i] == -1 ,不存在 Alice 和 Bob 可以相遇的建筑。

提示:

  • 1 <= heights.length <= 5 * 104
  • 1 <= heights[i] <= 109
  • 1 <= queries.length <= 5 * 104
  • queries[i] = [ai, bi]
  • 0 <= ai, bi <= heights.length - 1

实现原理与步骤

1.题目意思解析

queries[i][0]和queries[i][1]相等情况下返回queryies[i][0];

queries[i][0]和queries[i][1]不等情况下,找到最接近的下标j使得height(j)>Math.max(height(queries[i][0]),height(queries[i][1])).

2.本题模拟算法情况下会超时,当存在大量queries情况下线段树方法是合理的选择。

3.线段树的构建没什么特殊,特殊的是查询条件变了。

原本查询的区间条件left和right变为起点查询条件pos和Math.max(height(queries[i][0]),height(queries[i][1])的val值。

  • 当Math.max(height(queries[i][0]),height(queries[i][1]))大于zd[node]时跳过当前node对应的线段,返回0.
  • 当pos<=mid时跳过该线段查询,由于递归的下标从小到大,所以跳过该段查询后下一段最小的序号即为对应最接近的下标j。
  • 当start==end时返回节点的序号start,也就是找到最接近的下标j使得height(j)>Math.max(height(queries[i][0]),height(queries[i][1]))

 实现代码

class Solution {int[] zd;public int[] leftmostBuildingQueries(int[] heights, int[][] queries) {int n = heights.length;zd = new int[n * 4];buildTree(heights,0, 0, n-1);int m = queries.length;int[] ans = new int[m];for (int i = 0; i < m; i++) {int a = queries[i][0];int b = queries[i][1];if (a > b) {int temp = a;a = b;b = temp;}if (a == b || heights[a] < heights[b]) {ans[i] = b;continue;}int tempRes = queryTree(0,0,n-1,b + 1, heights[a]);ans[i]=tempRes==0?-1:tempRes;}return ans;}public void buildTree(int[] nums, int node, int start, int end) {if (start == end) {zd[node] = nums[start];} else {int mid = (start + end) / 2;int leftChild = 2 * node + 1;int rightChild = 2 * node + 2;buildTree(nums, leftChild, start, mid);buildTree(nums, rightChild, mid + 1, end);zd[node] = Math.max(zd[leftChild] ,zd[rightChild]);}}private int queryTree(int node, int start, int end, int pos, int val) {if (val>=zd[node]) {return 0;}if (start==end) {return start;}int mid = (start + end) / 2;int leftChild = 2 * node + 1;int rightChild = 2 * node + 2;if(pos<=mid){int res = queryTree(leftChild, start, mid, pos, val);if(res!=0){return res;}}return queryTree(rightChild, mid + 1, end, pos, val);}
}

1.QA:

相关文章:

leetcode线段树(2940. 找到 Alice 和 Bob 可以相遇的建筑)

前言 经过前期的基础训练以及部分实战练习&#xff0c;粗略掌握了各种题型的解题思路。现阶段开始专项练习。 描述 给你一个下标从 0 开始的正整数数组 heights &#xff0c;其中 heights[i] 表示第 i 栋建筑的高度。 如果一个人在建筑 i &#xff0c;且存在 i < j 的建筑…...

用于不平衡医疗数据分类的主动SMOTE

一、主动学习如何应用于不平衡数据的处理 首先&#xff0c;主动SMOTE不是像经典的SMOTE那样从训练集中随机选择一个样本作为生成合成样本的轴心点&#xff0c;而是通过不确定性和多样性采样来智能地进行样本选择&#xff0c;这是主动学习的两种技术。 在数据不平衡的情况下&…...

linux文件更新日期与系统日期比较

项目说明&#xff1a; 要获取linux系统中某目录下最新文件的修改时间并与当前系统时间进行比较&#xff0c;可以使用以下步骤&#xff1a; 使用 ls 命令获取最新文件的修改时间。 使用 date 命令获取当前时间。 计算时间差并打印结果。 实例脚本如下&#xff1a; #!/bin/…...

leetCode - - - 哈希表

目录 1.模拟行走机器人&#xff08;LeetCode 874&#xff09; 2.数组的度&#xff08;LeetCode 697&#xff09; 3.子域名访问次数&#xff08;LeetCode 811&#xff09; 4.字母异位词分组&#xff08;LeetCode 49&#xff09; 5.小结 1.常见的哈希表实现 2.遍历Map 1.模…...

NGINX自动清理180天之前的日志

需求描述 日志每天会以天为单位产生一个日志&#xff0c;不清理的话会越来越多。这里写一个Lua自定定时清理日志目录下的日志文件。 依赖安装 安装 lfs 模块 yum install luarocks yum install lua-develluarocks install luafilesystem 创建模拟旧文件 创建了一个1月的旧…...

jackson 轻松搞定接口数据脱敏

一、简介 实际的业务开发过程中&#xff0c;我们经常需要对用户的隐私数据进行脱敏处理&#xff0c;所谓脱敏处理其实就是将数据进行混淆隐藏&#xff0c;例如下图&#xff0c;将用户的手机号、地址等数据信息&#xff0c;采用*进行隐藏&#xff0c;以免泄露个人隐私信息。 如…...

Nginx 正则表达式与rewrite

目录 一、正则表达式 二、rewrite 2.1 rewrite简述 2.2 rewrite 跳转 2.3 rewrite 执行顺序 2.4 rewrite 语法格式 三、location 3.1 location 类别 3.2 location常用匹配规则 3.3 location优先级 3.4 示例说明 3.5 匹配规则总结 3.6 三个匹配规则定义 四、实战…...

tekton什么情况下在Dockerfile中需要用copy

kaniko配置如下 如果docker中的workDir跟tekton中的workDir不一致需要copy。也可以通过mv&#xff0c;cp达到类似效果...

第九届世界渲染大赛在哪里提交作品呢?

自第九届世界渲染大赛开放投稿以来&#xff0c;已经过去了10天。在这段时间里&#xff0c;众多CG爱好者已经完成了他们的动画创作。然而&#xff0c;许多参赛者对于如何提交他们的作品仍然感到困惑。接下来&#xff0c;让我们一起了解具体的投稿流程和入口&#xff0c;确保每位…...

fastjson(autoType)反序列化漏洞

1. 温少和他的fastjson 阿里巴巴的 FastJSON&#xff0c;也被称为 Alibaba FastJSON 或阿里巴巴 JSON&#xff0c;是一个高性能的 Java JSON 处理库&#xff0c;用于在 Java 应用程序中解析和生成 JSON 数据。FastJSON 以其卓越的性能和功能丰富的特点而闻名&#xff0c;并在…...

Java入门基础16:集合框架1(Collection集合体系、List、Set)

集合体系结构 Collection是单列集合的祖宗&#xff0c;它规定的方法&#xff08;功能&#xff09;是全部单列集合都会继承的。 collection集合体系 Collection的常用方法 package com.itchinajie.d1_collection;import java.util.ArrayList; import java.util.HashSet;/* * 目…...

Qt如何调用接口

在Qt中&#xff0c;你可以使用QNetworkAccessManager类来调用API。以下是一个简单的示例&#xff1a; cpp #include <QCoreApplication> #include <QNetworkAccessManager> #include <QNetworkRequest> #include <QNetworkReply> int main(int arg…...

Android14之解决编译libaaudio.so报错问题(二百二十七)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 新书发布&#xff1a;《Android系统多媒体进阶实战》&#x1f680; 优质专栏&#xff1a; Audio工程师进阶系列…...

【专题】2024年7月人工智能AI行业报告合集汇总PDF分享(附原数据表)

原文链接:https://tecdat.cn/?p37350 随着人工智能技术的飞速发展&#xff0c;AI已经成为当今时代的重要驱动力。本报告将聚焦于人工智能AI行业的最新动态&#xff0c;涵盖客户服务、体验营销、资产管理以及国产AI大模型应用等多个领域。通过深入研究和分析&#xff0c;我们…...

干货分享|如何使用Stable Diffusion打造会说话的数字人?

数字人已不是什么新鲜名词了。在许多领域&#xff0c;尤其是媒体和娱乐领域&#xff0c;经常可以看到卡通形象的人物或逼真的虚拟主持人。在Stable Diffusion中&#xff0c;我们可以上传一段录制好的音频文件&#xff0c;然后使用SadTalker插件&#xff0c;将音频和图片相结合&…...

OrangePi AIpro学习4 —— 昇腾AI模型推理 C++版

目录 一、ATC模型转换 1.1 模型 1.2 ATC工具 1.3 实操模型转换 1.4 使用ATC工具时的一些关键注意事项 1.5 ATC模型转换命令举例 二、运行昇腾AI模型应用样仓程序 2.1 程序目录 2.2 下载模型和模型转换 2.3 下载图片和编译程序 2.4 解决报错 2.5 运行程序 三、运行…...

vue js 多组件异步请求解决方案

接口之间异步问题可以采用Promiseasyncawait 链接&#xff1a; https://blog.csdn.net/qq_39816586/article/details/103517416 使用场景&#xff1a; 1.保障用户必须完成自动登录&#xff0c;才调用后续逻辑 2.保障必须完成初始启动&#xff0c;才调用后续逻辑 3.保障先执行on…...

【Android】不同系统版本获取设备MAC地址

【Android】不同系统版本获取设备MAC地址 尝试实现 尝试 在开发过程中&#xff0c;想要获取MAC地址&#xff0c;最开始想到的就是WifiManager&#xff0c;但结果始终返回02:00:00:00:00:00&#xff0c;由于用得是wifi &#xff0c;考虑是不是因为用得网线的原因&#xff0c;但…...

残差网络--NLP上的应用

在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;残差网络&#xff08;ResNet&#xff09;同样有着广泛的应用。虽然最初的残差网络设计是为了处理图像任务&#xff0c;但其核心思想也被成功地迁移到了自然语言处理任务中&#xff0c;以解决深层神经网络中的退化问题…...

1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新2024/08/14)

在数据科学的世界中,“一图胜千言”的古老谚语依然适用。数据可视化不仅仅是将数据以图形化的方式展现,更是帮助我们发现数据背后隐藏模式、趋势和异常的强大工具。R语言作为数据科学的主要编程语言之一,以其强大的可视化能力而闻名,许多数据科学家和分析师因此选择了R作为…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...