当前位置: 首页 > news >正文

点云规则格网化,且保存原始的点云索引

点云规则格网化,且保存原始的点云索引

点云深度学习Voxelize规则,参考PTV2:https://github.com/Gofinge/PointTransformerV2

1总执行文件

import numpy as np
import torch
from pcr.utils.registry import Registry
TRANSFORMS = Registry("transforms")
@TRANSFORMS.register_module()
class Voxelize(object):def __init__(self,voxel_size=0.05,hash_type="fnv",mode='train',keys=("coord", "normal", "color", "label"),return_inverse=False,return_discrete_coord=False,return_min_coord=False):self.voxel_size = voxel_sizeself.hash = self.fnv_hash_vec if hash_type == "fnv" else self.ravel_hash_vecassert mode in ["train", "test"]self.mode = modeself.keys = keysself.return_inverse = return_inverseself.return_discrete_coord = return_discrete_coordself.return_min_coord = return_min_coorddef __call__(self, data_dict):assert "coord" in data_dict.keys()discrete_coord = np.floor(data_dict["coord"] / np.array(self.voxel_size)).astype(np.int)min_coord = discrete_coord.min(0) * np.array(self.voxel_size)discrete_coord -= discrete_coord.min(0)key = self.hash(discrete_coord)idx_sort = np.argsort(key)key_sort = key[idx_sort]_, inverse, count = np.unique(key_sort, return_inverse=True, return_counts=True)if self.mode == 'train':  # train modeidx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + np.random.randint(0, count.max(), count.size) % countidx_unique = idx_sort[idx_select]if self.return_discrete_coord:data_dict["discrete_coord"] = discrete_coord[idx_unique]if self.return_inverse:data_dict["mask"] = np.zeros_like(inverse)data_dict["mask"][idx_unique] = 1data_dict["inverse"] = np.zeros_like(inverse)data_dict["inverse"][idx_sort] = inversedata_dict["length"] = np.array(inverse.shape)if self.return_min_coord:data_dict["min_coord"] = min_coord.reshape([1, 3])for key in self.keys:data_dict[key] = data_dict[key][idx_unique]# print('data_dict["discrete_coord"].shape',data_dict["discrete_coord"].shape,' ',data_dict[key].shape)return data_dictelif self.mode == 'test':  # test modedata_part_list = []for i in range(count.max()):temp=np.insert(count, 0, 0)temp2=temp[0: -1]temp3= np.cumsum(temp2)temp4 = np.cumsum(temp2)+i % countidx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + i % countidx_part = idx_sort[idx_select]data_part = dict(index=idx_part)# TODO to be more robustfor key in self.keys:data_part[key] = data_dict[key][idx_part]if self.return_discrete_coord:data_part["discrete_coord"] = discrete_coord[idx_part]if self.return_inverse:data_part["inverse"] = np.zeros_like(inverse)data_part["inverse"][idx_sort] = inversedata_part["length"] = np.array(inverse.shape)if self.return_min_coord:data_part["min_coord"] = min_coord.reshape([1, 3])data_part_list.append(data_part)return data_part_listelse:raise NotImplementedError@staticmethoddef ravel_hash_vec(arr):"""Ravel the coordinates after subtracting the min coordinates."""assert arr.ndim == 2arr = arr.copy()arr -= arr.min(0)arr = arr.astype(np.uint64, copy=False)arr_max = arr.max(0).astype(np.uint64) + 1keys = np.zeros(arr.shape[0], dtype=np.uint64)# Fortran style indexingfor j in range(arr.shape[1] - 1):keys += arr[:, j]keys *= arr_max[j + 1]keys += arr[:, -1]return keys@staticmethoddef fnv_hash_vec(arr):"""FNV64-1A"""assert arr.ndim == 2# Floor first for negative coordinatesarr = arr.copy()arr = arr.astype(np.uint64, copy=False)hashed_arr = np.uint64(14695981039346656037) * np.ones(arr.shape[0], dtype=np.uint64)for j in range(arr.shape[1]):hashed_arr *= np.uint64(1099511628211)hashed_arr = np.bitwise_xor(hashed_arr, arr[:, j])return hashed_arr
class Compose(object):def __init__(self, cfg=None):self.cfg = cfg if cfg is not None else []self.transforms = []for t_cfg in self.cfg:self.transforms.append(TRANSFORMS.build(t_cfg))def __call__(self, data_dict):for t in self.transforms:data_dict = t(data_dict)return data_dictdata2 = torch.load('/media/1.pth')
Voxelize()
transform = Compose([dict(type="Voxelize", voxel_size=0.5, hash_type='fnv', mode='test',keys=("coord", "color", "semantic_gt"), return_discrete_coord=True)])
data2['coord']=np.zeros((8,3))
data2['coord'][:,0]=[9,7,1.01,1.02,3,4.01,4.02,4.03]
data2['coord'][:,1]=[9,7,1.01,1.02,3,4.01,4.02,4.03]
data2['coord'][:,2]=[9,7,1.01,1.02,3,4.01,4.02,4.03]
data2_voxelize = transform(data2)
# coord_p, idx_uni = np.random.rand(data["coord"].shape[0]) * 1e-3, np.array([])
# print(idx_uni.size)
for i in range(3):print(data2_voxelize[i]['coord'])
s=1

输入

data2[‘coord’]=np.zeros((8,3))
data2[‘coord’][:,0]=[9,7,1.01,1.02,3,4.01,4.02,4.03]
data2[‘coord’][:,1]=[9,7,1.01,1.02,3,4.01,4.02,4.03]
data2[‘coord’][:,2]=[9,7,1.01,1.02,3,4.01,4.02,4.03]

输出

[[9. 9. 9. ]
[7. 7. 7. ]
[4.01 4.01 4.01]
[3. 3. 3. ]
[1.01 1.01 1.01]]

[[9. 9. 9. ]
[7. 7. 7. ]
[4.02 4.02 4.02]
[3. 3. 3. ]
[1.02 1.02 1.02]]

[[9. 9. 9. ]
[7. 7. 7. ]
[4.03 4.03 4.03]
[3. 3. 3. ]
[1.01 1.01 1.01]]

相关文章:

点云规则格网化,且保存原始的点云索引

点云规则格网化,且保存原始的点云索引 点云深度学习Voxelize规则,参考PTV2:https://github.com/Gofinge/PointTransformerV2 1总执行文件 import numpy as np import torch from pcr.utils.registry import Registry TRANSFORMS Registry…...

入职第一天就被迫离职,找工作多月已读不回,面试拿不到offer我该怎么办?

大多数情况下,测试员的个人技能成长速度,远远大于公司规模或业务的成长速度。所以,跳槽成为了这个行业里最常见的一个词汇。 前言 前几天,我们一个粉丝跟我说,正常入职一家外包,什么都准备好了&#xff0…...

走进Vue【三】vue-router详解

目录🌟前言🌟路由🌟什么是前端路由?🌟前端路由优点缺点🌟vue-router🌟安装🌟路由初体验1.路由组件router-linkrouter-view2.步骤1. 定义路由组件2. 定义路由3. 创建 router 实例4. 挂…...

html+css制作

<!DOCTYPE html> <html><head><meta charset"utf-8"><title>校园官网</title><style type"text/css">*{padding: 0;margin: 0;}#logo{width:30%;float: left;}.nav{width: 100%;height: 100px;background-color…...

Python实现rar、zip和7z文件的压缩和解压

一、7z压缩文件的压缩和解压 1、安装py7zr 我们要先安装py7zr第三方库&#xff1a; pip install py7zr如果python环境有问题&#xff0c;执行上面那一条安装语句老是安装在默认的python环境的话&#xff0c;我们可以执行下面这条语句&#xff0c;将第三方库安装在项目的虚拟…...

从Hive源码解读大数据开发为什么可以脱离SQL、Java、Scala

从Hive源码解读大数据开发为什么可以脱离SQL、Java、Scala 前言 【本文适合有一定计算机基础/半年工作经验的读者食用。立个Flg&#xff0c;愿天下不再有肤浅的SQL Boy】 谈到大数据开发&#xff0c;占据绝大多数人口的就是SQL Boy&#xff0c;不接受反驳&#xff0c;毕竟大…...

RocketMQ 事务消息 原理及使用方法解析

&#x1f34a; Java学习&#xff1a;Java从入门到精通总结 &#x1f34a; 深入浅出RocketMQ设计思想&#xff1a;深入浅出RocketMQ设计思想 &#x1f34a; 绝对不一样的职场干货&#xff1a;大厂最佳实践经验指南 &#x1f4c6; 最近更新&#xff1a;2023年3月24日 &#x…...

为什么 ChatGPT 输出时经常会中断,需要输入“继续” 才可以继续输出?

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;蚂蚁集团高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《EffectiveJava》独家解析》专栏作者。 热门文章推荐…...

PyTorch 之 基于经典网络架构训练图像分类模型

文章目录一、 模块简单介绍1. 数据预处理部分2. 网络模块设置3. 网络模型保存与测试二、数据读取与预处理操作1. 制作数据源2. 读取标签对应的实际名字3. 展示数据三、模型构建与实现1. 加载 models 中提供的模型&#xff0c;并且直接用训练的好权重当做初始化参数2. 参考 pyto…...

Scrapy的callback进入不了回调方法

一、前言 有的时候&#xff0c;Scrapy的callback方法直接被略过了&#xff0c;不去执行其中的回调方法&#xff0c;可能排查好久都排查不出来&#xff0c;我来教大家集中解决方法。 yield Request(urlurl, callbackself.parse_detail, cb_kwargs{item: item})二、解决方法 1…...

第二十一天 数据库开发-MySQL

目录 数据库开发-MySQL 前言 1. MySQL概述 1.1 安装 1.2 数据模型 1.3 SQL介绍 1.4 项目开发流程 2. 数据库设计-DDL 2.1 数据库操作 2.2 图形化工具 2.3 表操作 3. 数据库操作-DML 3.1 增加(insert) 3.2 修改(update) 3.3 删除(delete) 数据库开发-MySQL 前言 …...

蓝桥杯每日一真题—— [蓝桥杯 2021 省 AB2] 完全平方数(数论,质因数分解)

文章目录[蓝桥杯 2021 省 AB2] 完全平方数题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1样例 #2样例输入 #2样例输出 #2提示思路&#xff1a;理论补充&#xff1a;完全平方数的一个性质&#xff1a;完全平方数的质因子的指数一定为偶数最终思路&#xff1a;小插曲&am…...

Linux编辑器-vim

一、vim简述1&#xff09;vi/vim2&#xff09;检查vim是否安装2)如何用vim打开文件3)vim的几种模式命令模式插入模式末行模式可视化模式二、vim的基本操作1)进入vim&#xff08;命令行模式&#xff09;2)[命令行模式]切换至[插入模式]3)[插入模式]切换至[命令行模式]4)[命令行模…...

5G将在五方面彻底改变制造业

想象一下这样一个未来&#xff0c;智能机器人通过在工厂车间重新配置自己&#xff0c;从多条生产线上组装产品。安全无人机处理着从监视入侵者到确认员工停车等繁琐的任务。自动驾驶汽车不仅可以在建筑物之间运输零部件&#xff0c;还可以在全国各地运输。工厂检查可以在千里之…...

http和https的区别?

http和https的区别&#xff1f;HTTPHTTPSHTTP与HTTPS区别HTTPS相比于HTTP协议的优点和缺点HTTP http是超文本传输协议 HTTP协议是基于传输层的TCP协议进行通信&#xff0c;通用无状态的协议。80端口 HTTPS https—安全的超文本传输协议 是以安全为目标的HTTP通道&#xff0c;…...

【Spring Cloud Alibaba】4.创建服务消费者

文章目录简介开始搭建创建项目修改POM文件添加启动类添加配置项添加Controller添加配置文件启动项目测试访问Nacos访问接口查看端点检查简介 接下来我们创建一个服务消费者&#xff0c;本操作先要完成之前的步骤&#xff0c;详情请参照【Spring Cloud Alibaba】Spring Cloud A…...

C语言——动态内存管理 malloc、calloc、realloc、free的使用

目录 一、为什么存在动态内存分配 二、动态内存函数的介绍 2.1malloc和free 2.2calloc 2.3realloc 三、常见的动态内存错误 3.1对NULL指针的解引用操作 3.2对动态开辟空间的越界访问 3.3对非动态开辟的内存使用free释放 3.4使用free释放一块动态开辟内存的一部分 3.5…...

技术分享——Java8新特性

技术分享——Java8新特性1.背景2. 新特性主要内容3. Lambda表达式4. 四大内置核心函数式接口4.1 Consumer<T>消费型接口4.2 Supplier<T>供给型接口4.3 Function<T,R>函数型接口4.4 Predicate<T> 断定型接口5. Stream流操作5.1 什么是流以及流的类型5.2…...

vue基础知识大全

1&#xff0c;指令作用 以v-开头&#xff0c;由vue提供的attribute&#xff0c;为渲染DOM应用提供特殊的响应式行为&#xff0c;也即是在表达式的值发生变化的时候响应式的更新DOM。其内容为可以被求值的js代码&#xff0c;可以写在return后面被返回的表达式。 指令的简写指令简…...

第2篇|文献研读|nature climate change|减缓气候变化和促进热带生物多样性的碳储量走廊

研究背景 从 2000 年到 2012 年&#xff0c;潮湿和干燥热带地区的森林总损失超过 90,000 平方公里 yr-1&#xff0c;这主要是由农业扩张驱动的。热带森林砍伐向大气中排放 0:95 Pg C yr-1 并导致广泛的生物多样性丧失。保护区的生物多样性取决于与保护区所在的更广泛景观的生态…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...