希尔排序,详细解析(附图解)
1.希尔排序思路
希尔排序是一种基于插入排序的算法,通过将原始数据分成若干个子序列,然后对子序列进行插入排序,逐渐减小子序列的间隔,最后对整个序列进行一次插入排序。
1.分组直接插入排序,目标接近有序-----------gap>1
2.直接插入排序,目标有序-----------------------gap=1
2.分组排序思路分析
假设固定gap=3,那么以下数组可以分为三组
每一组都使用用直接插入排序,使数据有序

最后三组都排完后数组变成了:0,2,1,4,3,6,5,7,8,此时的结果接近有序
此时只需要再调用一次插入排序,即可让整个数组变得有序。
下面我们来实现一下这个
2.1思路代码
void ShellSort(int* a, int n)
{int gap = 3;for (int j = 0; j < gap; j++){for (int i = j; i < n - gap; i += gap){int end = i;int tmp = a[end + gap];while (end >= 0){if (a[end] > tmp){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}for (int i = 0; i < n; i++){printf("%d ", a[i]);}printf("\n");}
}
在每一组排序后都打印一下来观察
2.2结果显示

3.gap的设定
当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
当我们不再固定gap而是让他变化时,如下图gap=gap/2;

3.1动图演示

一般现在认为gap=gap/3+1较为合适,我们以此来实现一下代码
3.2最终代码实现
这里省去了一层for循环,把原本一组一组交换变为了组之间交替交换,时间复杂度没有改变。
//升序
void ShellSort(int* a, int n)
{int gap = n;while (gap > 1){gap = gap / 3 + 1;for (int i = 0; i < n - gap; i++){int end = i;int tmp = a[end + gap];while (end >= 0){if (a[end] > a[end + gap]){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}}
}
4.时间复杂度
记忆:O(N^1.3)
比O(N*logN)大,比O(N^2)小
希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定


相关文章:
希尔排序,详细解析(附图解)
1.希尔排序思路 希尔排序是一种基于插入排序的算法,通过将原始数据分成若干个子序列,然后对子序列进行插入排序,逐渐减小子序列的间隔,最后对整个序列进行一次插入排序。 1.分组直接插入排序,目标接近有序--------…...
【C语言篇】编译和链接以及预处理介绍(下篇)
文章目录 前言#和###运算符##运算符 命名约定#undef命令⾏定义条件编译#if和#endif多个分支的条件编译判断是否被定义嵌套指令 头文件被包含头文件被包含的方式本地文件包含库文件的包含 嵌套文件包含 其他预处理指令 写在最后 前言 本篇接前一篇【C语言篇】编译和链接以及预处…...
利用Llama2 7b自己实现一套离线AI
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家, 可以当故事来看,轻松学习。 离了 ChatGPT 本人简直寸步难行,今天 ChatGPT 大面积宕机,服务直到文章写作&am…...
Ciallo~(∠・ω・ )⌒☆第十七篇 Ubuntu基础使用 其一
Ubuntu是一种基于Linux的操作系统,它是开源的、免费的,并且具有广泛的用户群体。 基本文件操作:Ubuntu使用命令行工具来进行文件操作。以下是一些常用的命令: 切换到用户主目录: cd ~ 切换到上级目录: cd .…...
Linux-零拷贝技术
什么是零拷贝? 在传统的数据传输过程中,数据需要从磁盘读取到内核空间的缓冲区,然后再从内核空间拷贝到用户空间的应用程序缓冲区。如果需要将数据发送到网络,数据还需要再次从用户空间拷贝到内核空间的网络缓冲区。这个过程涉及…...
小区团购管理
TOC springboot254小区团购管理 第1章 绪论 1.1选题动因 当前的网络技术,软件技术等都具备成熟的理论基础,市场上也出现各种技术开发的软件,这些软件都被用于各个领域,包括生活和工作的领域。随着电脑和笔记本的广泛运用&…...
图像文本擦除无痕迹!复旦提出EAFormer:最新场景文本分割新SOTA!(ECCV`24)
文章链接:https://arxiv.org/pdf/2407.17020 git链接:https://hyangyu.github.io/EAFormer/ 亮点直击 为了在文本边缘区域实现更好的分割性能,本文提出了边缘感知Transformer(EAFormer),该方法明确预测文…...
Codeforces Round 966 (Div. 3)(A,B,C,D,E,F)
A. Primary Task 签到 void solve() {string s;cin>>s;bool bltrue;if(s.size()<2)blfalse;else{if(s.substr(0,2)"10"){if(s[2]0)blfalse;else if(s[2]1&&s.size()<3)blfalse; }else blfalse;}if(bl)cout<<"YES\n";else cout…...
【代码随想录算法训练营第42期 第六天 | LeetCode242.有效的字母异位词、349. 两个数组的交集、202. 快乐数、1. 两数之和】
代码随想录算法训练营第42期 第六天 | LeetCode242.有效的字母异位词、349. 两个数组的交集、202. 快乐数、1. 两数之和 一、242.有效的字母异位词 解题代码C: bool isAnagram(char* s, char* t) {int len1 strlen(s);int len2 strlen(t);int al[26] {0};int b…...
WebRTC音视频开发读书笔记(一)
一、基本概念 WebRTC(Web Real-Time Communication,网页即时通信)于2011年6月1日开源,并被纳入万维网联盟的W3C推荐标准,它通过简单API为浏览器和移动应用提供实时通信RTC功能。 1、特点 跨平台:可以在Web,Android、…...
llama3.1本地部署方式
llama3.1 资源消耗情况 Llama 3.1 - 405B、70B 和 8B 的多语言与长上下文能力解析  70B版本,FP1616K token需要的资源约为75G;FP16128K token需要的资源约为110G  1、ollama ollama工具部署及使用…...
相机光学(三十四)——色差仪颜色观察者视角
1.为什么会有观察者视角 颜色观察角度主要涉及到人眼观察物体时,视角的大小以及屏幕显示颜色的方向性对颜色感知的影响。 人眼观察物体的视角:在黑暗条件下,人眼主要依靠杆体细胞来分辨物体的轮廓,而杆体细胞分布在视网…...
思二勋:web3.0是打造应对复杂市场敏捷组织的关键
本文内容摘自思二勋所著的《分布式商业生态战略》一书。 数字化时代,需要企业具备敏捷应对变化的能力,以敏捷反应应对客户和市场的迅速变化。敏捷能力的建设需要触点网络、信息系统、IT 架构、业务流程等同时实现敏捷。尤其是在多变且复杂环境中,特别要求战略管理的敏捷性和…...
一文带你快速了解——HAProxy负载均衡
一、HAProxy简介 1.1、什么是Haproxy HAProxy是法国开发者 威利塔罗(Willy Tarreau)在2000年使用C语言开发的一个开源软件是一款具备高并发(万级以上)、高性能的TCP和HTTP负载均衡器支持基于cookie的持久性,自动故障切换,支持正则表达式及web状态统计。…...
【C++高阶】哈希—— 位图 | 布隆过滤器 | 哈希切分
✨ 人生如梦,朝露夕花,宛若泡影 🌏 📃个人主页:island1314 🔥个人专栏:C学习 ⛺️ 欢迎关注:👍点赞 👂&am…...
启发式算法之模拟退火算法
文章目录 1. 模拟退火算法概述1.1 算法起源与发展1.2 算法基本原理 2. 算法实现步骤2.1 初始化过程2.2 迭代与降温策略 3. 模拟退火算法的优化策略3.1 冷却进度表的设计3.2 参数调整与策略 4. 模拟退火算法的应用领域4.1 组合优化问题4.1.1 旅行商问题(TSPÿ…...
编码器汇总:光学编码器,霍尔编码器,磁性编码器,电容式编码器,单圈编码器,多圈编码器,增量式编码器,绝对值式编码器等
系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 前言一、光学编码器二、霍尔编码器三、磁性编码器四、电容式编码器五、单圈编码器六、多圈编码器七、增量式编码器八、…...
有哪些性价比高的蓝牙耳机可入?四款百万好评实力品牌推荐!
蓝牙耳机大家都再熟悉不过了,作为最常用的智能配件之一,谁还没有用过几款蓝牙耳机呢,但是选购蓝牙耳机上还是有一些需要注意的地方,市面上的吹风机可谓是五花八门。有哪些性价比高的蓝牙耳机可入?本人花了一些时间整理…...
MySQL数据库——表的CURD(Update)
3.Update 语法:update table_name set column expr 案例 将孙悟空的数学成绩变更为80 mysql> select name,math from result; ----------------- | name | math | ----------------- | 唐三藏 | 98 | | 孙悟空 | 78 | | 猪悟能 | 98 |…...
性能测试 —— linux服务器搭建JMeter+Grafana+Influxdb监控可视化平台!
前言 在当前激烈的市场竞争中,创新和效率成为企业发展的核心要素之一。在这种背景下,如何保证产品和服务的稳定性、可靠性以及高效性就显得尤为重要。 而在软件开发过程中,性能测试是一项不可或缺的环节,它可以有效的评估一个系…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
