主成分分析(PCA)
1 主成分分析简介
主成分分析(Principal Component Analysis,PCA), 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。主成分分析是由卡尔·皮尔逊(Karl Pearson)于1901年发明的。通过维度约减的方式将高维度空间的数据映射到低维度空间的数据。
2 主成分分析基本原理
2.1 线性变换
主成分分析的核心思想是通过将原数据的维度进行线性变换得到一组新的数据维度(主成分)。这组新的数据维度称为主成分。主成分之间线性无关,主成分实际构建了数据新的特征维度,在该特征维度下,数据的维度可能进行了压降,数据的运算会变得更加容易。
有n个p维的样本,构成样本矩阵
假设有一组向量(数据)可以通过线性表达
当选择合适的系数,会构建满足条件的新的特征维度,记
。
记上述变换为,
其中。
在构建主成分时,要求之间线性无关,且在
时,
在主成分
上投影的方差大于在主成分
上的投影的方差。如此,数据
在主成分上进行了“分解”,且依据数据信息量的程度将主成分进行了区分和排序。当
时,实现了对数据的降维操作。
这里的变换矩阵即为所求的变换矩阵。
2.2 协方差与相关系数
假设样本,
则样本的均值为
,方差为
样本的协方差为
样本的相关系数为
若将样本标准化,即
,为便于表达再将其分别记为
。
则标准化后的的均值为0,方差为1,则其协方差矩阵与相关系数均为
。
在主成分中,由于线性无关,故
的协方差和相关系数均为0。
2.3 特征值与特征向量
现在假设的分量
均已按前述操作进行了标准化,则
的协方差矩阵
,为
的实对称阵。
存在主成分分析对应的矩阵,使得
。则
的协方差矩阵
由于线性无关,
的协方差为0,上述矩阵
为对角阵。
如此,可以看出主成分分析的问题转化之一的要求是寻找一矩阵,使得将实对称阵
转化为对角阵
。
根据实对称阵的相关代数知识,实对称阵一定存在一组非负特征值
和特征向量(单位正交向量)
,使得
,其中
为
维向量。
记,则
。
由于为正交矩阵,
,从而将上式左边同时乘以
得到
。
令,即可找出矩阵
。
其对上述特征值,若将其按从大到小排列,即,则对应的矩阵
为主成分分析所求的线性变换矩阵。
如此,问题得解。
当存在特征值为0时,则,起到降维的效果。
2.4 主成分的贡献
主成分的贡献率衡量的是主成分的影响。
主成分的贡献率为
。
主成分的累计贡献率为。
3 主成分分析算法步骤
3.1 数据标准化
将样本的每一个数据按照以下方式进行标准化:
,其中
的定义见前文。不妨将标准化后的数据仍记为
。
3.2 计算协方差矩阵
3.3 求解特征值和特征向量
记特征值为,特征向量为
,有
,得到方程
...... (1)式。
该方程有非零解的充要条件为行列式。这是一个关于
的齐次线性方程组,求解该方程组,得到
,并将其按从大到小排序。再将
代入(1)式,可求解出特征向量
,并将特征向量单位化。
3.4 构造主成分
若对主成分的累计贡献率有要求,如选择累计贡献率95%的特征值,记为
,对应的单位特征向量为
。
记,令
,利用线性变换
,得到主成分
。
4 主成分分析实例
这里用sklearn中自带的PCA模型及数据进行演示。
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
X = np.array([[-1, -2], [-2, -1], [-3, -2], [2, 1], [2, 1], [3, 2]])
X_std = StandardScaler().fit_transform(X) #数据标准化
pca = PCA(n_components=2)
pca.fit(X_std)
#查看特征值
print(pca.singular_values_)
[3.41436763 0.58488774]
#查看特征向量
print(pca.components_)
[[ 0.70710678 0.70710678][ 0.70710678 -0.70710678]]
5 主成分分析总结
(1)主成分分析的计算步骤简单,主要是求解特征值和特征向量;
(2)主成分分析的各主成分之间正交,数据运算会变得容易;
(3)当主成分的维度小于原数据维度时,可以起到降维的作用;
(4)主成分维度可能不如原数据维度直观,解释性较差;
(5)主成分分析有一些演变的方法,如核主成分分析,解决非线性问题的主成分分析问题。
相关文章:
主成分分析(PCA)
1 主成分分析简介 主成分分析(Principal Component Analysis,PCA), 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。主成分分析是由卡尔皮尔逊(Karl Pearson)于1901年发明的。通过维度约减的方式将高维度…...
python实现生命游戏
“生命游戏”(Conway’s Game of Life)是由数学家约翰康威提出的一种零玩家游戏。它是一个细胞自动机,由一组简单的规则决定每个细胞的状态。以下是用Python实现“生命游戏”的代码示例: Python代码实现 import numpy as np imp…...

基于vue框架的CIA报价平台的设计与实现1xv02(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。
系统程序文件列表 项目功能:用户,供应商,产品分类,产品信息,在线咨询,资质申请 开题报告内容 基于Vue框架的CIA报价平台的设计与实现 开题报告 一、选题背景 随着市场竞争的日益激烈,企业对于成本控制与效率提升的需求愈发迫切。在采购与供应链管理…...
【Kubernetes】k8s集群Pod控制器
目录 一.Pod控制器作用 二.Pod控制器类型 1.Deployment(简称deploy) ReplicaSet(简称rs) 2.StatefulSet(简称sts) 创建SatefulSet控制器 3.DaemonSet(简称ds) 4.Job 5.Cron…...
什么是NLP实体识别?
目录 1. 实体识别的基本概念 1.1 什么是实体识别? 1.2 实体识别的应用场景 2. 实体识别的常用方法 2.1 基于规则的方法 2.1.1 规则定义与模式匹配 2.2 基于机器学习的方法 2.2.1 特征工程与传统机器学习模型 2.3 基于深度学习的方法 2.3.1 神经网络模型 …...

掌握Jenkins自动化部署:从代码提交到自动上线的全流程揭秘
Jenkins自动化部署是现代软件开发中不可或缺的一部分,它不仅简化了代码的发布过程,还为整个团队带来了无与伦比的效率和协作力。想象一下,开发者们可以专注于编写高质量的代码,而不是为繁琐的手动部署所烦恼;测试人员能…...

糟糕界面集锦-控件篇09
目前我们还无法确定该把这个问题划到哪个类别中,但是如图所示,在一个列表框中只显示3 个项目无疑是愚蠢的。 这是微软的文件管理器提供的文件关联界面,用户需要把某一个特定类型的文件与一个应用程序关联时会弹出该对话框。如示例:…...

喵喵蓝牙热敏打印机(下)
目录 前言一、电量、温度、缺纸检测1.电量检测2.针头温度检测3.缺纸检测 二、蓝牙APP通信打印1.蓝牙初始化2.APP通信打印 三、FreeRTOS任务整合 前言 喵喵蓝牙热敏打印机(上) 内容有点多,就分为了上下两篇。 一、电量、温度、缺纸检测 先启…...

软件测试第1章 软件测试是什么
目录 内容说明 一、软件测试与质量概览需要熟悉什么 二、如何理解质量保证 三、软件测试的误区-程序员和测试的关系 四、软件测试是什么? 五、软件测试的目的 六、软件测试与软件质量保证 七、软件测试的必要性 八、软件测试的基本概念分析 …...
【技术分享】 hysteria2从服务端到客户端部署教程
hysteria2从服务端到客户端部署教程 前言 在如今的网络环境中,尤其是涉及跨国访问的场景中,hysteria2作为一个新兴的传输协议工具,凭借其高效的传输能力和灵活的配置方式,受到了越来越多用户的青睐。本教程将带您一步步完成hyst…...

C++入门基础知识16
C 的关键字(接上一篇博文!!!) 54. typeid 指出指针或引用指向的对象的实际派生类型。 55. typename typename(类型名字)关键字告诉编译器把一个特殊的名字解释成一个类型。在下列情况下必须对一…...

浏览器调试工具-Chrome Dev Tools
浏览器调试模式下的各个调试工具是常用的工具集,能够帮助开发者理解、调试和优化网页。 1.打开方式 直接在浏览器中按下F12键右键点击页面上的任一元素,选择“检查”(Inspect)在浏览器右上角点击菜单按钮,选择“更多…...

基于车联网大数据平台的用户驾驶习惯行为画像分析
近年来,新能源汽车行业的迅速发展推动了汽车智能化的趋势。新能源汽车上配备了成千上万的传感器,这些传感器采集了大量的行车数据被用于车辆运行状况的监控与分析。另一方面,采集到的大量行车数据,也能很好地体现用户的驾驶习惯。…...

Ubuntu24.04搭建maxkb开发环境
接上文:windows10搭建maxkb开发环境(劝退指南) 上文在windows10环境搭建maxkb开发环境遇到各种坑,后面就转战ubuntu平台,果然比较顺利的完成开发环境搭建。当然遇到相关的问题还是可以参考上文《windows10搭建maxkb开发…...
C++ 指针和引用的区别
1.引用在定义时必须初始化,而指针没有要求 2.引用一旦引用了一个实体就不能在引用其它实体,指针可以在任何时候指向同一类型的指针 3.没有空引用,但是有空指针 4.在sizeof中含义不同:引用结果为引用类型的大小,但指…...

python绘制蕨菜叶分形
一花一叶一世界,一草一木一浮生. 使用了四个不同的线性变换,根据概率选择其中一个变换并更新 x 和 y 坐标。然后将生成的绿色点绘制出来,形成一片蕨菜叶。 import numpy as np import matplotlib.pyplot as pltdef fern_fractal(num_points):# 初始化坐…...
1分钟了解pandas
Pandas 是一个强大的 Python 库,用于数据分析和数据处理。它为 Python 提供了高效的数据结构和数据分析工具,使得数据操作变得简单而直观。Pandas 由 Wes McKinney 在 2008 年创建,并迅速成为数据科学领域中最受欢迎的库之一。 安装 Pandas …...

django-celery应用-定时执行测试cases
1、celery周期性任务 简介-----celery beat 是一个调度程序,它定期启动任务,然后由集群中的可用工作节点执行这些任务。 django-celery-beat celery默认的调度程序是 celery.beat.PersistentScheduler ,它简单地跟踪本地 shelve 数据库文件中…...

【C++深度探索】unordered_set、unordered_map封装
🔥 个人主页:大耳朵土土垚 🔥 所属专栏:C从入门至进阶 这里将会不定期更新有关C/C的内容,欢迎大家点赞,收藏,评论🥳🥳🎉🎉🎉 文章目录…...

CSS——字体背景(Font Background)
一、字体族 1、字体的相关样式: ① color 用来设置字体颜色(前景颜色) ② font-size 字体的大小 和font-size相关的单位: em 相对于当前元素的一个font-size rem 相对于根元素的一个font-size ③ font-family 字体族&#x…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...