当前位置: 首页 > news >正文

???ABC366:F - Maximum Composition(dp,无序:贪心排序)

问题陈述

给你 NN 个线性函数 f1,f2,…,fNf1​,f2​,…,fN​ ,其中 fi(x)=Aix+Bifi​(x)=Ai​x+Bi​ .

求由 KK 组成的序列 p=(p1,p2,…,pK)p=(p1​,p2​,…,pK​) 中 fp1(fp2(…fpK(1)…))fp1​​(fp2​​(…fpK​​(1)…)) 的最大可能值。介于 11 和 NN (含)之间的个不同整数的最大可能值 fp1(fp2(…fpK(1)…))fp1​​(fp2​​(…fpK​​(1)…)) 。

限制因素
  • 1≤N≤2×1051≤N≤2×105
  • 1≤K≤min(N,10)1≤K≤min(N,10)
  • 1≤Ai,Bi≤501≤Ai​,Bi​≤50 (1≤i≤N)(1≤i≤N)
  • 所有输入值均为整数。
做法

我们看到这题肯定是想到了dp。但是吧,这题是要考虑顺序的,就是从n个中选k个,这k个数字的顺序会影响答案。那怎么办呢,我们肯定是不想要去考虑那个顺序的,我们就想把它先排好序。那就看看他能不能排序。我们假设i排在j前更好,那么就有Ai(Aj+Bj) + Bi > Aj(Ai+Bi) + Bj,即Ai*Bj + Bi > Aj*Bi + Bj。把i和i的放在一起,且i的必须放在左边,不然会出错,可能是我们已经加设了i排在j前更好吧,不太懂。然后得到Bi-AjBi > Bj-AiBj,即Bi(1-Aj) > Bj(1-Ai)。然后你可以选择用Bi(1-Aj)排序,或者Bj(1-Ai)排序。

排完序就好办了,dp数组下标:第i到n个选了j个 ; 值:f函数的总值。我们为啥要倒着从n到1来遍历呢,因为函数是从外到里嵌套的,就是根据那个排序来的。

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,k;
int dp[200010][20];//下标:第i到n个选了j个  值:f函数的总值 bool cmp(pair<int,int> a,pair<int,int> b){//贪心 //return b.second*(a.first-1) > b.first*(a.second-1);错误的return 1ll*a.second*(1-b.first)>1ll*b.second*(1-a.first);
}signed main(){scanf("%lld%lld",&n,&k);vector< pair<int,int> > v(n+1);for(int i=1;i<=n;i++){cin>>v[i].first>>v[i].second;}sort(v.begin()+1,v.end(),cmp);for(int i=1;i<=n+1;i++){for(int j=0;j<=10;j++){dp[i][j]=-1e6;}}dp[n+1][0]=1;//起初f(x)函数的x是1 for(int i=n;i>=1;i--){for(int j=0;j<=k;j++){dp[i][j]=max(dp[i][j],dp[i+1][j]);//不选 if(j) dp[i][j]=max(dp[i][j],1ll*v[i].first*dp[i+1][j-1]+v[i].second);}}cout<<dp[1][k];}
最后

还是不太理解吧,那个排序函数写的,我改成别的都过不去。

相关文章:

???ABC366:F - Maximum Composition(dp,无序:贪心排序)

问题陈述 给你 NN 个线性函数 f1,f2,…,fNf1​,f2​,…,fN​ &#xff0c;其中 fi(x)AixBifi​(x)Ai​xBi​ . 求由 KK 组成的序列 p(p1,p2,…,pK)p(p1​,p2​,…,pK​) 中 fp1(fp2(…fpK(1)…))fp1​​(fp2​​(…fpK​​(1)…)) 的最大可能值。介于 11 和 NN (含)之间的个不…...

unity项目打包为webgl后应用于vue项目中(iframe模式)的数据交互

参考文章&#xff1a; 1.Unity打包WebGL: 导入Vue 2.unity文档-WebGL&#xff1a;与浏览器脚本交互 3.unity与vue交互(无第三方插件&#xff09; 目录 一、前期工作1.新建.jslib文件2.新建.cs脚本3. 新建一个Text对象和button按钮对象4.添加脚本空对象UIEvent5.导出unity为w…...

【数据结构与算法 | 图篇】Bellman-Ford算法(单源最短路径算法)

1. 前言 前文的迪杰斯特拉算法不能求解有负边的图的最短路径的问题。而此文的Bellman-Ford可以处理含负权边的图算法&#xff0c;并且能检测出图中是否存在负环&#xff08;权重和为负数的环&#xff09;. 2. 基本思想 1. 初始化&#xff1a; 对于所有顶点 v ∈ V \ {s}&am…...

Python | Leetcode Python题解之第336题回文对

题目&#xff1a; 题解&#xff1a; class Solution:def palindromePairs1(self, words: List[str]) -> List[List[int]]:# 核心思想--枚举前缀和后缀# 如果两个字符串k1&#xff0c;k2组成一个回文字符串会出现三种情况# len(k1) len(k2),则需要比较k1 k2[::-1]# len(k1…...

C语言家教记录(六)

导语 本次授课的内容如下&#xff1a;指针&#xff0c;指针和数组 辅助教材为 《C语言程序设计现代方法&#xff08;第2版&#xff09;》 指针 指针变量 计算机按字节划分地址&#xff0c;每个地址访问一个字节 指针变量指向变量的地址&#xff0c;指的是变量第一个字节的…...

C++竞赛初阶L1-11-第五单元-for循环(25~26课)519: T454430 人口增长问题

题目内容 假设目前的世界人口有 x 亿&#xff0c;按照每年 0.1% 的增长速度&#xff0c;n 年后将有多少人&#xff1f; 输入格式 一行两个正整数 x 和 n&#xff0c;之间有一个空格。其中&#xff0c;1≤x≤100,1≤n≤100。 输出格式 一行一个数&#xff0c;表示答案。以亿…...

demo测试

目录 接口commonCodeGenerator entityuser mapperUserMapper controllerUserController serviceUserServiceimplUserServiceImpl mapper.xmlpom.xmlapplication.yml 接口 common CodeGenerator package com.llz.demo.common;import com.baomidou.mybatisplus.core.exceptions…...

TinTinLand Web3 + DePIN 共学月|深入探索 DePIN 项目,全景分析去中心化网络未来

「TinTinLand Web3 主题共学月」是由 TinTinLand 每月发起的主题学习活动&#xff0c;携手知名项目共同打造一个系统化、互动性强的学习平台&#xff0c;帮助开发者不断提升技能&#xff0c;紧跟 Web3 技术的前沿发展。活动通过演示视频、学习打卡、模拟环境、实际操作等多种方…...

Java并发编程(六)

1、java 中有几种方法可以实现一个线程 继承 Thread 类实现 Runnable 接口实现 Callable 接口&#xff0c;需要实现的是 call() 方法 2、如何停止一个正在运行的线程 使用共享变量的方式 在这种方式中&#xff0c;之所以引入共享变量&#xff0c;是因为该变量可以被多个执行…...

k8s对外服务之Ingress

目录 1.Ingress 简介 2.Ingress 组成 3.Ingress-Nginx 工作原理 4.部署 nginx-ingress-controller 5.总结 1.Ingress 简介 service的作用体现在两个方面&#xff0c;对集群内部&#xff0c;它不断跟踪pod的变化&#xff0c;更新endpoint中对应pod的对象&#xff0c;提供了…...

使用Python+moviepy在视频画面上绘制边框

一、 使用VideoFileClip对象的的fx函数设置vfx.margin&#xff0c;在视频画面上绘制边框 from moviepy.editor import * mvVideoFileClip(/home/Download/leaves.mp4) mv2mv.fx(vfx.margin,mar3,color(0,0,255),opacity0.5) # 绘制边框# mar3 &#xff1a;边框宽度3像素&#…...

灵办AI探索之旅:颠覆传统的代码开发工具

前言 灵办AI是一个先进的人工智能工具&#xff0c;专注于提高软件开发和项目管理的效率。其核心功能包括代码生成、优化、评估和自动化修复&#xff0c;旨在帮助开发者和团队提升开发速度和代码质量。 体验地址&#xff1a;https://ilingban.com/browser_extension/?fromjj …...

【Redis】Redis 数据类型与结构—(二)

Redis 数据类型与结构 一、值的数据类型二、键值对数据结构三、集合数据操作效率 一、值的数据类型 Redis “快”取决于两方面&#xff0c;一方面&#xff0c;它是内存数据库&#xff0c;另一方面&#xff0c;则是高效的数据结构。 Redis 键值对中值的数据类型&#xff0c;也…...

Tomcat初篇

目录 Tomcat主要特点Tomcat的核心组件Tomcat使用安装Tomcat配置Tomcat启动和停止Tomcat Tomcat工作原理目录结构配置文件性能优化策略 Tomcat Apache Tomcat是一个开源的Servlet容器和Web服务器&#xff0c;广泛用于运行基于Java的Web应用程序。它实现了Java Servlet和JavaSer…...

机器学习(2)-- KNN算法之手写数字识别

KNN算法 KNN&#xff08;K-Nearest Neighbor&#xff0c;K最近邻&#xff09;算法是一种用于分类和回归的非参数统计方法&#xff0c;尤其在分类问题中表现出色。在手写数字识别领域&#xff0c;KNN算法通过比较测试样本与训练样本之间的距离&#xff0c;找到最近的K个邻居&am…...

【机器人】关于钉钉机器人如何进行自定义开发问答【详细清晰】

目标&#xff1a;当用户输入问题并钉钉机器人&#xff0c;钉钉机器人进行相应的回答&#xff0c;达到一种交互问答的效果 开发文档参考&#xff1a;https://open.dingtalk.com/document/orgapp/robot-overview 首先进行登录企业&#xff0c;后面如果没有进行登录&#xff0c;会…...

Qt:exit,quit,close的用法及区别

前言 虽然能从单词的字面意思大致理解这些函数的意思&#xff0c;但是总感觉不出来它们的区别以及用法&#xff0c;特地去研究一下 正文 在 Qt 中&#xff0c;quit、exit 和 close 都是用于终止程序或关闭窗口的方法 1. QApplication::quit() 注意&#xff1a;注意quit() …...

Linux——进程地址空间

前言 在操作系统中&#xff0c;内存分为以下几个区域&#xff0c;从下往上按照从小到大排列 一、程序地址的分布 代码 #include <stdio.h> #include <stdlib.h> int noval; int val 1;int main(int argc,char*argv[],char*env[]){printf("code addr %p\n&q…...

信创(国产化)方案

信创 信创,即信息技术应用创新,旨在实现信息技术自主可控openEuler openEuler是一款开源、免费的操作系统,由openEuler社区运作,前身为运行在华为公司通用服务器上的操作系统EulerOS。openEuler作为一款开源、免费的操作系统,由开放原子开源基金会(OpenAtom Foundation)…...

EasyRecovery17中文版永久汉化版电脑数据恢复工具下载

&#x1f388;&#x1f389;安利时间到&#xff01;今天要跟大家分享的是——EasyRecovery17中文版的最新功能&#xff01;&#x1f389;&#x1f388; &#x1f31f;✨ “数据恢复小能手” ✨&#x1f31f; 让我来介绍一下这款软件的主打特点。 EasyRecovery17中文版是一款强…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...