当前位置: 首页 > news >正文

SQL中的聚合方法与Pandas的对应关系

在SQL和Pandas中,聚合方法是用来对数据进行汇总统计的重要工具。下面是SQL中的各种聚合方法及其与Pandas中相应操作的对应关系:

1. COUNT

  • SQL:

    • COUNT(*) 返回表中的行数。
    • COUNT(column) 返回指定列中非空值的数量。
  • Pandas:

    • count() 方法用于计算非空值的数量。
    • 示例代码:
      count_result = df['column'].count()
      

2. SUM

  • SQL:

    • SUM(column) 返回指定列中所有值的总和。
  • Pandas:

    • sum() 方法用于计算指定列中所有值的总和。
    • 示例代码:
      sum_result = df['column'].sum()
      

3. AVG / AVERAGE

  • SQL:

    • AVG(column) 返回指定列中所有值的平均值。
  • Pandas:

    • mean() 方法用于计算指定列中所有值的平均值。
    • 示例代码:
      avg_result = df['column'].mean()
      

4. MIN

  • SQL:

    • MIN(column) 返回指定列中的最小值。
  • Pandas:

    • min() 方法用于计算指定列中的最小值。
    • 示例代码:
      min_result = df['column'].min()
      

5. MAX

  • SQL:

    • MAX(column) 返回指定列中的最大值。
  • Pandas:

    • max() 方法用于计算指定列中的最大值。
    • 示例代码:
      max_result = df['column'].max()
      

6. GROUP BY

  • SQL:

    • GROUP BY column 用于对指定列中的值进行分组。
    • 可以结合 COUNT, SUM, AVG, MIN, MAX 等聚合函数一起使用。
  • Pandas:

    • groupby() 方法用于对DataFrame中的数据进行分组。
    • 可以结合 count(), sum(), mean(), min(), max() 等方法一起使用。
    • 示例代码:
      grouped_df = df.groupby('column').agg({'other_column': 'sum'})
      

7. DISTINCT

  • SQL:

    • DISTINCT column 返回指定列中的唯一值。
  • Pandas:

    • unique() 方法用于获取指定列中的唯一值。
    • 示例代码:
      unique_values = df['column'].unique()
      

8. HAVING

  • SQL:

    • HAVING condition 用于过滤 GROUP BY 后的结果集。
  • Pandas:

    • 没有直接对应的 having 方法,但可以使用 groupby() 结合 filter() 方法来实现类似功能。
    • 示例代码:
      filtered_df = df.groupby('column').filter(lambda x: x['other_column'].sum() > threshold)
      

示例代码

假设我们有一个DataFrame df,我们将演示这些聚合操作:

import pandas as pd# 创建示例 DataFrame
data = {'category': ['A', 'B', 'A', 'B', 'A', 'B'],'value': [10, 20, 30, 40, 50, 60]
}
df = pd.DataFrame(data)# COUNT
count_result = df['category'].count()
print("COUNT:")
print(count_result)# SUM
sum_result = df['value'].sum()
print("\nSUM:")
print(sum_result)# AVG / AVERAGE
avg_result = df['value'].mean()
print("\nAVG:")
print(avg_result)# MIN
min_result = df['value'].min()
print("\nMIN:")
print(min_result)# MAX
max_result = df['value'].max()
print("\nMAX:")
print(max_result)# GROUP BY
grouped_df = df.groupby('category').agg({'value': ['sum', 'mean', 'min', 'max']})
print("\nGROUP BY:")
print(grouped_df)# DISTINCT
unique_categories = df['category'].unique()
print("\nDISTINCT:")
print(unique_categories)# HAVING
threshold = 50
filtered_df = df.groupby('category').filter(lambda x: x['value'].sum() > threshold)
print("\nHAVING:")
print(filtered_df)

输出示例

假设DataFrame如下所示:

  category  value
0        A     10
1        B     20
2        A     30
3        B     40
4        A     50
5        B     60

输出结果将会是:

COUNT:
6SUM:
210AVG:
35.0MIN:
10MAX:
60GROUP BY:value        sum mean min max
category                 
A           90  30.0  10  50
B          120  40.0  20  60DISTINCT:
['A' 'B']HAVING:category  value
0        A     10
2        A     30
4        A     50
1        B     20
3        B     40
5        B     60

相关文章:

SQL中的聚合方法与Pandas的对应关系

在SQL和Pandas中,聚合方法是用来对数据进行汇总统计的重要工具。下面是SQL中的各种聚合方法及其与Pandas中相应操作的对应关系: 1. COUNT SQL: COUNT(*) 返回表中的行数。COUNT(column) 返回指定列中非空值的数量。 Pandas: count() 方法用于计算非空值…...

计算机毕业设计选题推荐-计算中心高性能集群共享平台-Java/Python项目实战

✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...

仿RabbitMq实现简易消息队列基础篇(future操作实现异步线程池)

TOC 介绍 std::future 是C11标准库中的一个模板类,他表示一个异步操作的结果,当我们在多线程编程中使用异步任务时,std::future可以帮助我们在需要的时候,获取任务的执行结果,std::future 的一个重要特性是能…...

经典算法题总结:数组常用技巧(双指针,二分查找和位运算)篇

双指针 在处理数组和链表相关问题时,双指针技巧是经常用到的,双指针技巧主要分为两类:左右指针和快慢指针。所谓左右指针,就是两个指针相向而行或者相背而行;而所谓快慢指针,就是两个指针同向而行&#xf…...

版本控制基础理论

一、本地版本控制 在本地记录文件每次的更新,可以对每个版本做一个快照,或是记录补丁文件,适合个人使用,如RCS. 二、集中式版本控制(代表SVN) 所有的版本数据都保存在服务器上,协同开发者从…...

微分方程(Blanchard Differential Equations 4th)中文版Section1.4

1.4 NUMERICAL TECHNIQUE: EULER’S METHOD 上一节中讨论的斜率场的几何概念与近似微分方程解的基本数值方法密切相关。给定一个初值问题 d y d t = f ( t , y ) , y ( t 0 ) = y 0 , \frac{dy}{dt}=f(t,y), \quad y(t_0) = y_0, dtdy​=f(t,y),y(t0​)=y0​, 我们可以通过首…...

求职Leetcode算法题(7)

1.搜索旋转排序数组 这道题要求时间复杂度为o(log n),那么第一时间想到的就是二分法,二分法有个前提条件是在有序数组下,我们发现在这个数组中存在两部分是有序的,所以我们只需要对前半部分和后半部分分别…...

ActiveMQ、RabbitMQ、Kafka、RocketMQ在事务性消息、性能、高可用和容错、定时消息、负载均衡、刷盘策略的区别

ActiveMQ、RabbitMQ、Kafka、RocketMQ这四种消息队列在事务性消息、性能、高可用和容错、定时消息、负载均衡、刷盘策略等方面各有其特点和差异。以下是对这些方面的详细比较: 1. 事务性消息 ActiveMQ:支持事务性消息。ActiveMQ可以基于JMS&#xff08…...

HanLP分词的使用与注意事项

1 概述 HanLP是一个自然语言处理工具包&#xff0c;它提供的主要功能如下&#xff1a; 分词转化为拼音繁转简、简转繁提取关键词提取短语提取词语自动摘要依存文法分析 下面将介绍其分词功能的使用。 2 依赖 下面是依赖的jar包。 <dependency><groupId>com.ha…...

Python 的进程、线程、协程的区别和联系是什么?

一、区别 1. 进程 • 定义&#xff1a;进程是操作系统分配资源的基本单位。 • 资源独立性&#xff1a;每个进程都有独立的内存空间&#xff0c;包括代码、数据和运行时的环境。 • 并发性&#xff1a;可以同时运行多个进程&#xff0c;操作系统通过时间片轮转等方式在不同…...

实时数据推送:Spring Boot 中两种 SSE 实战方案

在 Web 开发中&#xff0c;实时数据交互变得越来越普遍。无论是股票价格的波动、比赛比分的更新&#xff0c;还是聊天消息的传递&#xff0c;都需要服务器能够及时地将数据推送给客户端。传统的 HTTP 请求-响应模式在处理这类需求时显得力不从心&#xff0c;而服务器推送事件&a…...

数据守护者:SQL一致性检查的艺术与实践

标题&#xff1a;数据守护者&#xff1a;SQL一致性检查的艺术与实践 在数据驱动的商业世界中&#xff0c;数据的一致性是确保决策准确性和业务流程顺畅的关键。SQL作为数据查询和操作的基石&#xff0c;提供了多种工具来维护数据的一致性。本文将深入探讨如何使用SQL进行数据一…...

jenkins配置+vue打包多环境切换

jenkins配置流水线过程 1.新建item 加入相关的参数就行了。 流水线脚本设置 后端脚本 node {stage checkoutsh"""#每次打包清空工作空间目录rm -rf $workspace/*cd $workspace#到工作空间下从远端svn服务端拉取代码svn co svn://10.1.19.21/repo/技术中台/低…...

idea和jdk的安装教程

1.JDK的安装 下载 进入官网&#xff0c;找到你需要的JDK版本 Java Downloads | Oracle 中国 我这里是windows的jdk17&#xff0c;选择以下 安装 点击下一步&#xff0c;安装完成 配置环境变量 打开查看高级系统设置 在系统变量中添加两个配置 一个变量名是 JAVA_HOME …...

HTML静态网页成品作业(HTML+CSS)——电影网首页网页设计制作(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…...

大数据系列之:Flink Doris Connector,实时同步数据到Doris数据库

大数据系列之&#xff1a;Flink Doris Connector&#xff0c;实时同步数据到Doris数据库 一、版本兼容性二、使用三、Flink SQL四、DataStream五、Lookup Join六、配置通用配置项接收器配置项查找Join配置项 七、Doris 和 Flink 列类型映射八、使用Flink CDC访问Doris的示例九、…...

LabVIEW VI 多语言动态加载与运行的实现

在多语言应用程序开发中&#xff0c;确保用户界面能够根据用户的语言偏好动态切换是一个关键需求。本文通过分析一个LabVIEW程序框图&#xff0c;详细说明了如何使用LabVIEW中的属性节点和调用节点来实现VI&#xff08;虚拟仪器&#xff09;界面语言的动态加载与运行。此程序允…...

Unity引擎基础知识

目录 Unity基础知识概要 1. 创建工程 2. 工程目录介绍 3. Unity界面和五大面板 4. 游戏物体创建与操作 5. 场景和层管理 6. 组件系统 7. 脚本语言C# 8. 物理引擎和UI系统 学习资源推荐 Unity引擎中如何优化大型游戏项目的性能&#xff1f; Unity C#脚本语言的高级编…...

练习题- 探索正则表达式对象和对象匹配

正则表达式(Regular Expressions)是一种强大而灵活的文本处理工具,它允许我们通过模式匹配来处理字符串。这在数据清理、文本分析等领域有着广泛的应用。在Python中,正则表达式通过re模块提供支持,学习和掌握正则表达式对于处理复杂的文本数据至关重要。 本文将探索如何在…...

Java集合提升

1. 手写ArrayList 1.1. ArrayList底层原理细节 底层结构是一个长度可以动态增长的数组&#xff08;顺序表&#xff09;transient Object[] elementData; 特点&#xff1a;在内存中分配连续的空间&#xff0c;只存储数据&#xff0c;不存储地址信息。位置就隐含着地址。优点 节…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...