当前位置: 首页 > news >正文

SQL中的聚合方法与Pandas的对应关系

在SQL和Pandas中,聚合方法是用来对数据进行汇总统计的重要工具。下面是SQL中的各种聚合方法及其与Pandas中相应操作的对应关系:

1. COUNT

  • SQL:

    • COUNT(*) 返回表中的行数。
    • COUNT(column) 返回指定列中非空值的数量。
  • Pandas:

    • count() 方法用于计算非空值的数量。
    • 示例代码:
      count_result = df['column'].count()
      

2. SUM

  • SQL:

    • SUM(column) 返回指定列中所有值的总和。
  • Pandas:

    • sum() 方法用于计算指定列中所有值的总和。
    • 示例代码:
      sum_result = df['column'].sum()
      

3. AVG / AVERAGE

  • SQL:

    • AVG(column) 返回指定列中所有值的平均值。
  • Pandas:

    • mean() 方法用于计算指定列中所有值的平均值。
    • 示例代码:
      avg_result = df['column'].mean()
      

4. MIN

  • SQL:

    • MIN(column) 返回指定列中的最小值。
  • Pandas:

    • min() 方法用于计算指定列中的最小值。
    • 示例代码:
      min_result = df['column'].min()
      

5. MAX

  • SQL:

    • MAX(column) 返回指定列中的最大值。
  • Pandas:

    • max() 方法用于计算指定列中的最大值。
    • 示例代码:
      max_result = df['column'].max()
      

6. GROUP BY

  • SQL:

    • GROUP BY column 用于对指定列中的值进行分组。
    • 可以结合 COUNT, SUM, AVG, MIN, MAX 等聚合函数一起使用。
  • Pandas:

    • groupby() 方法用于对DataFrame中的数据进行分组。
    • 可以结合 count(), sum(), mean(), min(), max() 等方法一起使用。
    • 示例代码:
      grouped_df = df.groupby('column').agg({'other_column': 'sum'})
      

7. DISTINCT

  • SQL:

    • DISTINCT column 返回指定列中的唯一值。
  • Pandas:

    • unique() 方法用于获取指定列中的唯一值。
    • 示例代码:
      unique_values = df['column'].unique()
      

8. HAVING

  • SQL:

    • HAVING condition 用于过滤 GROUP BY 后的结果集。
  • Pandas:

    • 没有直接对应的 having 方法,但可以使用 groupby() 结合 filter() 方法来实现类似功能。
    • 示例代码:
      filtered_df = df.groupby('column').filter(lambda x: x['other_column'].sum() > threshold)
      

示例代码

假设我们有一个DataFrame df,我们将演示这些聚合操作:

import pandas as pd# 创建示例 DataFrame
data = {'category': ['A', 'B', 'A', 'B', 'A', 'B'],'value': [10, 20, 30, 40, 50, 60]
}
df = pd.DataFrame(data)# COUNT
count_result = df['category'].count()
print("COUNT:")
print(count_result)# SUM
sum_result = df['value'].sum()
print("\nSUM:")
print(sum_result)# AVG / AVERAGE
avg_result = df['value'].mean()
print("\nAVG:")
print(avg_result)# MIN
min_result = df['value'].min()
print("\nMIN:")
print(min_result)# MAX
max_result = df['value'].max()
print("\nMAX:")
print(max_result)# GROUP BY
grouped_df = df.groupby('category').agg({'value': ['sum', 'mean', 'min', 'max']})
print("\nGROUP BY:")
print(grouped_df)# DISTINCT
unique_categories = df['category'].unique()
print("\nDISTINCT:")
print(unique_categories)# HAVING
threshold = 50
filtered_df = df.groupby('category').filter(lambda x: x['value'].sum() > threshold)
print("\nHAVING:")
print(filtered_df)

输出示例

假设DataFrame如下所示:

  category  value
0        A     10
1        B     20
2        A     30
3        B     40
4        A     50
5        B     60

输出结果将会是:

COUNT:
6SUM:
210AVG:
35.0MIN:
10MAX:
60GROUP BY:value        sum mean min max
category                 
A           90  30.0  10  50
B          120  40.0  20  60DISTINCT:
['A' 'B']HAVING:category  value
0        A     10
2        A     30
4        A     50
1        B     20
3        B     40
5        B     60

相关文章:

SQL中的聚合方法与Pandas的对应关系

在SQL和Pandas中,聚合方法是用来对数据进行汇总统计的重要工具。下面是SQL中的各种聚合方法及其与Pandas中相应操作的对应关系: 1. COUNT SQL: COUNT(*) 返回表中的行数。COUNT(column) 返回指定列中非空值的数量。 Pandas: count() 方法用于计算非空值…...

计算机毕业设计选题推荐-计算中心高性能集群共享平台-Java/Python项目实战

✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...

仿RabbitMq实现简易消息队列基础篇(future操作实现异步线程池)

TOC 介绍 std::future 是C11标准库中的一个模板类,他表示一个异步操作的结果,当我们在多线程编程中使用异步任务时,std::future可以帮助我们在需要的时候,获取任务的执行结果,std::future 的一个重要特性是能…...

经典算法题总结:数组常用技巧(双指针,二分查找和位运算)篇

双指针 在处理数组和链表相关问题时,双指针技巧是经常用到的,双指针技巧主要分为两类:左右指针和快慢指针。所谓左右指针,就是两个指针相向而行或者相背而行;而所谓快慢指针,就是两个指针同向而行&#xf…...

版本控制基础理论

一、本地版本控制 在本地记录文件每次的更新,可以对每个版本做一个快照,或是记录补丁文件,适合个人使用,如RCS. 二、集中式版本控制(代表SVN) 所有的版本数据都保存在服务器上,协同开发者从…...

微分方程(Blanchard Differential Equations 4th)中文版Section1.4

1.4 NUMERICAL TECHNIQUE: EULER’S METHOD 上一节中讨论的斜率场的几何概念与近似微分方程解的基本数值方法密切相关。给定一个初值问题 d y d t = f ( t , y ) , y ( t 0 ) = y 0 , \frac{dy}{dt}=f(t,y), \quad y(t_0) = y_0, dtdy​=f(t,y),y(t0​)=y0​, 我们可以通过首…...

求职Leetcode算法题(7)

1.搜索旋转排序数组 这道题要求时间复杂度为o(log n),那么第一时间想到的就是二分法,二分法有个前提条件是在有序数组下,我们发现在这个数组中存在两部分是有序的,所以我们只需要对前半部分和后半部分分别…...

ActiveMQ、RabbitMQ、Kafka、RocketMQ在事务性消息、性能、高可用和容错、定时消息、负载均衡、刷盘策略的区别

ActiveMQ、RabbitMQ、Kafka、RocketMQ这四种消息队列在事务性消息、性能、高可用和容错、定时消息、负载均衡、刷盘策略等方面各有其特点和差异。以下是对这些方面的详细比较: 1. 事务性消息 ActiveMQ:支持事务性消息。ActiveMQ可以基于JMS&#xff08…...

HanLP分词的使用与注意事项

1 概述 HanLP是一个自然语言处理工具包&#xff0c;它提供的主要功能如下&#xff1a; 分词转化为拼音繁转简、简转繁提取关键词提取短语提取词语自动摘要依存文法分析 下面将介绍其分词功能的使用。 2 依赖 下面是依赖的jar包。 <dependency><groupId>com.ha…...

Python 的进程、线程、协程的区别和联系是什么?

一、区别 1. 进程 • 定义&#xff1a;进程是操作系统分配资源的基本单位。 • 资源独立性&#xff1a;每个进程都有独立的内存空间&#xff0c;包括代码、数据和运行时的环境。 • 并发性&#xff1a;可以同时运行多个进程&#xff0c;操作系统通过时间片轮转等方式在不同…...

实时数据推送:Spring Boot 中两种 SSE 实战方案

在 Web 开发中&#xff0c;实时数据交互变得越来越普遍。无论是股票价格的波动、比赛比分的更新&#xff0c;还是聊天消息的传递&#xff0c;都需要服务器能够及时地将数据推送给客户端。传统的 HTTP 请求-响应模式在处理这类需求时显得力不从心&#xff0c;而服务器推送事件&a…...

数据守护者:SQL一致性检查的艺术与实践

标题&#xff1a;数据守护者&#xff1a;SQL一致性检查的艺术与实践 在数据驱动的商业世界中&#xff0c;数据的一致性是确保决策准确性和业务流程顺畅的关键。SQL作为数据查询和操作的基石&#xff0c;提供了多种工具来维护数据的一致性。本文将深入探讨如何使用SQL进行数据一…...

jenkins配置+vue打包多环境切换

jenkins配置流水线过程 1.新建item 加入相关的参数就行了。 流水线脚本设置 后端脚本 node {stage checkoutsh"""#每次打包清空工作空间目录rm -rf $workspace/*cd $workspace#到工作空间下从远端svn服务端拉取代码svn co svn://10.1.19.21/repo/技术中台/低…...

idea和jdk的安装教程

1.JDK的安装 下载 进入官网&#xff0c;找到你需要的JDK版本 Java Downloads | Oracle 中国 我这里是windows的jdk17&#xff0c;选择以下 安装 点击下一步&#xff0c;安装完成 配置环境变量 打开查看高级系统设置 在系统变量中添加两个配置 一个变量名是 JAVA_HOME …...

HTML静态网页成品作业(HTML+CSS)——电影网首页网页设计制作(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…...

大数据系列之:Flink Doris Connector,实时同步数据到Doris数据库

大数据系列之&#xff1a;Flink Doris Connector&#xff0c;实时同步数据到Doris数据库 一、版本兼容性二、使用三、Flink SQL四、DataStream五、Lookup Join六、配置通用配置项接收器配置项查找Join配置项 七、Doris 和 Flink 列类型映射八、使用Flink CDC访问Doris的示例九、…...

LabVIEW VI 多语言动态加载与运行的实现

在多语言应用程序开发中&#xff0c;确保用户界面能够根据用户的语言偏好动态切换是一个关键需求。本文通过分析一个LabVIEW程序框图&#xff0c;详细说明了如何使用LabVIEW中的属性节点和调用节点来实现VI&#xff08;虚拟仪器&#xff09;界面语言的动态加载与运行。此程序允…...

Unity引擎基础知识

目录 Unity基础知识概要 1. 创建工程 2. 工程目录介绍 3. Unity界面和五大面板 4. 游戏物体创建与操作 5. 场景和层管理 6. 组件系统 7. 脚本语言C# 8. 物理引擎和UI系统 学习资源推荐 Unity引擎中如何优化大型游戏项目的性能&#xff1f; Unity C#脚本语言的高级编…...

练习题- 探索正则表达式对象和对象匹配

正则表达式(Regular Expressions)是一种强大而灵活的文本处理工具,它允许我们通过模式匹配来处理字符串。这在数据清理、文本分析等领域有着广泛的应用。在Python中,正则表达式通过re模块提供支持,学习和掌握正则表达式对于处理复杂的文本数据至关重要。 本文将探索如何在…...

Java集合提升

1. 手写ArrayList 1.1. ArrayList底层原理细节 底层结构是一个长度可以动态增长的数组&#xff08;顺序表&#xff09;transient Object[] elementData; 特点&#xff1a;在内存中分配连续的空间&#xff0c;只存储数据&#xff0c;不存储地址信息。位置就隐含着地址。优点 节…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...